Ядерно-энергетические транспортные установки

Электротехника
Расчет цепей постоянного тока
Расчет цепей переменного тока
Расчет трехфазных цепей
Примеры  решения типовых задач
Лабораторные работы
Методические указания к решению задачи
Расчет сглаживающего фильтра
Трехфазные цепи
Цепи несиносоидального тока
Математика
Интегрирование тригонометрических функций
Вычисление интегралов от рациональных функций
Интегрирование рациональных функций
Повторные интегралы
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Теорема Остроградского-Гаусса
Независимость криволинейных интегралов от пути интегрирования
Физические приложения двойных интегралов
Физические приложения криволинейных интегралов
Физические приложения поверхностных интегралов
Физические приложения тройных интегралов
Теорема Стокса
Поверхностные интегралы первого рода
Поверхностные интегралы второго рода
Тройные интегралы в декартовых координатах
Тройные интегралы в цилиндрических координатах
Тройные интегралы в сферических координатах
Производная показательной и логарифмической функции
Производная степенной функции
Производная произведения и частного функций
Дифференцирование и интегрирование степенных рядов
Найти производную функции
Примеры вычисления производной
Производная обратной функции
Логарифмическое дифференцирование
Исследование функций с помощью производных
Физика
Электродинамика
Электростатика
Электрический ток
Термодинамика
Решение задач
Основные операции над векторами
Кинематика твердого тела
Силы Виды взаимодействий
Закон сохранения импульса
Гравитация Законы Кеплера
Неинерциальные системы отсчета
Механические колебания
Физический маятник
Математический маятник
Резонанс
Специальная теория относительности

Преобразования Лоренца

Математическая физика
Химия
Примеры решения задач
контрольной работы
Современная теория строения
атомов и молекул
Контрольные задания
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Химическая кинетика
Электролиз
Начертательная геометрия
Сечение геометрического тела
Аксонометрические проекции
Сборочный чертеж
Построение тел вращения
Развертка прямой призмы
Машиностроительное черчение
Профиль  резьбы
Работа «Соединение болтом»
Работа «Соединение шпилькой»
Сварные соединения
Разновидность  крепежных изделий
Выполнить эскизы с натуры
Шероховатостью поверхности
Выполнениечертежа сборочной единицы
Деталирование чертежа общего вида
Построение смешанного сопряжения.
Направления штриховки в разрезах
Сопромат
Деформации и перемещения при кручении валов
Расчет статически неопределимых балок
Действие с силами и моментами
Расчеты на прочность по допускаемым напряжениям
Расчет цилиндрических витых пружин

Примеры решения задач на прочность

Ядерная энергетика
Реакторы атомных станций
Ядерное топливо и ядерные отходы
Ядерно-энергетические транспортные установки
Блочный щит управления энергоблока
Реакторы на быстрых нейтронах
АЭС с реакторами ВВЭР нового поколения
РБМК - Реактор Большой Мощности Канальный
ВВЭР и РБМК: сравнительные характеристики
Энергосберегающие технологии
Альтернативная энергетика
Информатика
Тонкая клиентная сеть
Создание корпоративной Webсети
Восстановление ЛВС после аварий
Беспроводные сети
Серверы масштаба предприятия и суперсерверы
Протоколы сетевого управления
Прокси-серверы
Оценка эффективности локальной сети
Производительность рабочих станций и серверов ЛВС
Кабельные системы для локальных сетей
История искусства
Архитектура
Интерьеры античности и возраждения в Италии
Вид на Акрополь
План терм Константина; разрез и фасады
План  и разрез Сакристии Сан Лоренцо
Интерьеры XIV—XV веков и эпохи классицизма в России
Интерьеры Успенского собора
Усадьба «Высокие горы»
 
Цифровая фотография

Атомные суда в мирных целях Самая Важная сфера применения ядерных энергетических установок – это морской флот и прежде всего ледокольный флот.

Ядерная энергетическая установка Атомные ледоколы "Таймыр", "Вайгач", лихтеровоз "Севморпуть" оборудованы атомной энергоустановкой типа КЛТ-40 с одним реактором, ледоколы типа "Арктика" - ОК-900 с двумя водо-водяными реакторами. Активная зона реакторов этого типа имеет около 1,5 м в высоту и около 1 м в диаметре и включает 241—247 тепловыделяющих сборок. Обогащение топлива не превышает 30-40 % по урану-235. При нормальной эксплуатации перезарядка топлива производится каждые три (четыре) года. Эта операция проводится на РТП "Атомфлот".

Атомные подводные лодки и надводные корабли С 1955 по 1996 гг. в бывшем СССР построено около 250 атомных подводных лодок и 5 надводных кораблей. Помимо этого был сконструирован ядерный реактор (класса "Нюрка"), который предполагалось устанавливать на дизельные подводные лодки. К Северному флоту приписано 2/3 всех атомных подводных лодок России, 1/3 приходится на Тихоокеанский флот. На Черноморском и Балтийском флотах атомные подводные лодки не базируются.

Запуск ракеты на Северном полюсе Некоторые АПЛ класса "Акула", построенные в середине 80-х гг., позднее были усовершенствованы с целью уменьшения уровня шумности. Последние АПЛ этого класса имеют уровень шумности меньший, чем те, что были введены в эксплуатацию в 1990 г. Эти подводные лодки классифицируются как "Акула- II" и в длину превосходят АПЛ класса "Акула-I" на 4 метра, В настоящее время продолжается строительство только двух проектов АПЛ третьего поколения (классов "Оскар" и "Акула").

Атомные надводные корабли За период с 1974 г. по настоящее время на Балтийском заводе в Санкт-Петербурге было построено 4 атомных крейсера проекта ("Адмирал Нахимов", "Адмирал Лазарев", "Адмирал Ушаков", "Петр Великий") и один атомный корабль связи проекта ("Урал"). "Адмирал Ушаков" и "Адмирал Нахимов" базируются на Северном флоте, "Адмирал Лазарев" и "Урал" — на Тихоокеанском.

Подводные транспортные суда Идея создания подводных транспортных судов, способных перевозить различные, в том числе жидкие, грузы подо льдами Северного Ледовитого океана независимо от погодных условий, давно обсуждается учеными и инженерами. В последние годы было предложено много проектов и программ, в том числе проект подводного супертанкера для транспортировки из Арктики сжиженного газа американской фирмы General Dynamics, пятилетняя программа канадского правительства по созданию подводно-надводных судов для перевозки нефти, газа и других полезных ископаемых

ЯДЕРНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ
Научно-исследовательские работы в области космических ракетных-двигателей в период между 1970 и 2000 гг. будут ориентированы в основном на создание ядерного ракетного двигателя (ЯРД), использующего энергию реакции деления. Будут созданы и найдут широкое применение в освоении космоса ЯРД с твердофазной активной зоной, имеющие удельную тягу ~1000 сек. Опыт осуществления таких программ и разработки химических ракетных двигателей, работающих при высоких давлениях в камере сгорания, будет служить основой для создания ЯРД с газофазной активной зоной, обладающих удельной тягой 2000 - 5000 сек при работе в космических условиях.
Возможны два взаимосвязанных типа ЯРД с газофазной активной зоной. В проекте двигателя с удержанием ядерного горючего предполагается применение вихревой закрутки или коаксиальных потоков для разделения газообразного ядерного горючего и рабочего тела во избежание смешения двух газов. В более перспективном проекте ЯРД с прозрачной ампулой также используются газодинамические силы для отделения газообразного ядерного горючего от стенок реактора, но в этом случае обеспечивается абсолютное разделение ядерного горючего и рабочего тела с помощью прозрачной ампулы. Первый проект более прост, однако он не найдет широкого применения ввиду опасности радиоактивного загрязнения атмосферы. С другой стороны, реализация второго проекта потребует дополнительных исследовательских работ в области прозрачных материалов, однако такой ЯРД будет пригоден как для полетов в космосе, так и в земной атмосфере. Электростатические (ионные) ракетные двигатели с ядерным реактором в качестве источника энергии достигнут высокой степени совершенства, что позволит широко использовать эти двигатели при освоении дальнего космоса. Что касается импульсных ядерных двигателей , то хотя с технической точки зрения они могут быть созданы раньше газофазных и иметь более высокую удельную тягу, их разработка вряд ли получит поддержку ввиду возможной опасности загрязнения продуктами распада атмосферы и экзосферы. Когда эта проблема будет решена, газофазный двигатель станет столь совершенным, что отпадет потребность в какой-либо другой системе.
ТЕРМОЯДЕРНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ
Программа 2001 г. будет включать разработку термоядерных ракетных двигателей с газофазной активной зоной (прямого и непрямого действия), но в ограниченных масштабах. Такие системы, как средства космического транспорта, не обладают большими преимуществами по сравнению с ЯРД с газофазной активной зоной. Тем не менее в соответствии с требованиями научного исследования дальнего космоса будут оправданы дальнейшие разработки в этом направлении, особенно ионных ракетных двигателей с использованием энергии термоядерной реакции, в которых новые сверхпроводящие магнетики будут преобразовывать энергию магнитогидродинамическим способом при удельном весе конструкции, приближающемся к 0,45 кг/квт.
ФОТОННЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ
Разработка фотонных ракетных двигателей для межзвездных полетов станет очередной задачей научных исследований. К рассматриваемому времени в лабораториях, находящихся на земной орбите, будут испытываться фотонные ракетные системы с газовым лазером и ядерным реактором. В окончательном виде фотонный ракетный двигатель будет реализован лишь после того, как будет создан мощный источник энергии с использованием аннигиляции материи

Основы физики и электротехники. Лекции, курсовые, задачи, учебники