ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ Курс лекций начало

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

xmax=x/t=2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

 

 

 

 

 

 

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t1=l с и t2=6 с:

x1 = А + Bt1 + Ct12 = 8 м, x2 = А + Bt2 + Ct22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с

Координата, м

t1=0

x0=A=5

t1=1

x0=8

tB=2

xmax=9

=5

x=0

t2=6

x2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (tB) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость <vx> за интервал времени t2t1 определяется выражением

<vx>=(x2-x1)/(t2t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

<vx>=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость <v> находим из выражения

<v>=s/(t2-t1),

где s путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S1=xmaxx1, который точка прошла за интервал времени tB—t1, и S2=xmax+|x2|, который она прошла за интервал

 

  Рис. 1.2

 

 

 

 

T2—tB. Таким образом, путь

S = S1 + S2 = (xmaxx2) + (xmax + |x2|) == 2xmax + |x2|x1.

Подставим в это выражение значения xmax , |x2|, x1 и произведем вычисления :

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость

<v>=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени:  Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

an==0,5 м/с2.

Полное ускорение, как это видно из рис. 1.1, является геометрической суммой ускорений а и аn: а=а+аn. Модуль ускорения . Подставив в это выражение найденные значения а и аn получим

а=1,12 м/с2.

2. Чтобы определить путь s, пройденный автомобилем, заметим, что в случае движения в одном направлении (как это имеет место в условиях данной задачи) длина пути s равна изменению криволинейной координаты  т. е.

s=, или .

Подставим в полученное выражение значения В, С,  и произведем вычисления:

s=50 м.

 


* В заданном уравнении движения   означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

 

 

 

Модуль перемещения, как это видно из рис. 1.3, равен |r|=2Rsin(/2),

где  — угол между радиусами-векторами, определяющими начальное (0) и конечное  положения автомашины на траектории. Этот угол (в радианах) находим как отношение длины пути s к радиусу кривизны R траектории, т. е. = =s/R. Таким образом,

Подставим сюда значения R, s и произведем вычисления:

|[= 47,9м.

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение  маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной  и конечной  угловыми скоростями соотношением , откуда  Но так как  то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

Знак минус указывает на то, что маховик вращался замедленно. Определим продолжительность торможения, используя формулу, связывающую угол поворота  со средней угловой скоростью <v> вращения и временем t: =<>t. По условиям задачи, угловая скорость линейно зависит от времени и поэтому можно написать, тогда ,

Откуда

Подставив числовые значения и произведя вычисления, получим

 

Классическая механика или механика Ньютона изучает движение тел, которое состоит в перемещении тел или их частей друг относительно друга. Механику можно разделить на два раздела: кинематику и динамику. Кинематика изучает движение тел, не интересуясь причинами, обуславливающими это движение. Динамика изучает движение тел в связи с теми причинами ( взаимодействиями между телами), которые обуславливают тот или иной характер движения.
Основы физики и электротехники. Лекции, курсовые, задачи, учебники