ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ, примеры решения задач

Электродинамика Электростатика Электрический ток Термодинамика Решение задач по физике Математическая физика Электротехника Трехфазные цепи Математика Химия Начертательная геометрия Машиностроительное черчение Ядерная энергетика Прием от покоряющих подружекСургута http://surgut.prostitutki.black/priem/, так что выберите себе эту или запросите другую услугу и упоение вам будет обеспечено 100%.

Электротехника
Расчет цепей постоянного тока
Расчет цепей переменного тока
Расчет трехфазных цепей
Примеры  решения типовых задач
Лабораторные работы
Методические указания к решению задачи
Расчет сглаживающего фильтра
Трехфазные цепи
Цепи несиносоидального тока
Математика
Интегрирование тригонометрических функций
Вычисление интегралов от рациональных функций
Интегрирование рациональных функций
Повторные интегралы
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Теорема Остроградского-Гаусса
Независимость криволинейных интегралов от пути интегрирования
Физические приложения двойных интегралов
Физические приложения криволинейных интегралов
Физические приложения поверхностных интегралов
Физические приложения тройных интегралов
Теорема Стокса
Поверхностные интегралы первого рода
Поверхностные интегралы второго рода
Тройные интегралы в декартовых координатах
Тройные интегралы в цилиндрических координатах
Тройные интегралы в сферических координатах
Производная показательной и логарифмической функции
Производная степенной функции
Производная произведения и частного функций
Дифференцирование и интегрирование степенных рядов
Найти производную функции
Примеры вычисления производной
Производная обратной функции
Логарифмическое дифференцирование
Исследование функций с помощью производных
Физика
Электродинамика
Электростатика
Электрический ток
Термодинамика
Решение задач
Основные операции над векторами
Кинематика твердого тела
Силы Виды взаимодействий
Закон сохранения импульса
Гравитация Законы Кеплера
Неинерциальные системы отсчета
Механические колебания
Физический маятник
Математический маятник
Резонанс
Специальная теория относительности

Преобразования Лоренца

Математическая физика
Химия
Примеры решения задач
контрольной работы
Современная теория строения
атомов и молекул
Контрольные задания
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Химическая кинетика
Электролиз
Начертательная геометрия
Сечение геометрического тела
Аксонометрические проекции
Сборочный чертеж
Построение тел вращения
Развертка прямой призмы
Машиностроительное черчение
Профиль  резьбы
Работа «Соединение болтом»
Работа «Соединение шпилькой»
Сварные соединения
Разновидность  крепежных изделий
Выполнить эскизы с натуры
Шероховатостью поверхности
Выполнениечертежа сборочной единицы
Деталирование чертежа общего вида
Построение смешанного сопряжения.
Направления штриховки в разрезах
Сопромат
Деформации и перемещения при кручении валов
Расчет статически неопределимых балок
Действие с силами и моментами
Расчеты на прочность по допускаемым напряжениям
Расчет цилиндрических витых пружин

Примеры решения задач на прочность

Ядерная энергетика
Реакторы атомных станций
Ядерное топливо и ядерные отходы
Ядерно-энергетические транспортные установки
Блочный щит управления энергоблока
Реакторы на быстрых нейтронах
АЭС с реакторами ВВЭР нового поколения
РБМК - Реактор Большой Мощности Канальный
ВВЭР и РБМК: сравнительные характеристики
Энергосберегающие технологии
Альтернативная энергетика
Информатика
Тонкая клиентная сеть
Создание корпоративной Webсети
Восстановление ЛВС после аварий
Беспроводные сети
Серверы масштаба предприятия и суперсерверы
Протоколы сетевого управления
Прокси-серверы
Оценка эффективности локальной сети
Производительность рабочих станций и серверов ЛВС
Кабельные системы для локальных сетей
История искусства
Архитектура
Интерьеры античности и возраждения в Италии
Вид на Акрополь
План терм Константина; разрез и фасады
План  и разрез Сакристии Сан Лоренцо
Интерьеры XIV—XV веков и эпохи классицизма в России
Интерьеры Успенского собора
Усадьба «Высокие горы»
 
Цифровая фотография

КИНЕМАТИКА Основные формулы

Пример 1.Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A>=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1>=2 с определить:

1) координату x1 точки,

2) мгновенную скорость v>1,

3) мгновенное ускорение a1.

Пример 2.Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A>=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s> от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ТЕЛА, ДВИЖУЩИХСЯ ПОСТУПАТЕЛЬНО

Пример 1. К концам однородного стержня приложены две про­тивоположно направленные силы: F1=40H и F2=100 H

Пример 2. В лифте на пружинных весах находится тело массой т=10 кг . Лифт движется с ускорением а=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.

Пример 3. При падении тела с большой высоты его скорость vуст установившемся движении достигает 80 м/с. Определить время , в течение которого начиная от момента начала падения скорость становится равной 1/2ст. Силу сопротивления воздуха принять пропорциональной скорости тела.

Пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом   =30° к нормали. Определить импульс р, получаемый стенкой.

Прием от покоряющих подружекСургута http://surgut.prostitutki.black/priem/, так что выберите себе эту или запросите другую услугу и упоение вам будет обеспечено 100%.

Пример 5. На спокойной воде пруда стоит лодка длиной L и массой М перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой т. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.

Пример 6. Два шара массами m1=2,5 кг и m2==1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v>2=2 м/с. Определить: 1) скорость и шаров после удара; 2) кинетические энергии

Пример 7. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m 95%'>= 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.

РЕЛЯТИВИСТСКАЯ МЕХАНИКА.

Пример 1. Космический корабль движется со скоростью υ=0,9 с по направлению к центру Земли. Какое расстояние l прой­дет этот корабль в системе отсчета, связанной с Землей (K-система), за интервал времени Δt0=1 с, отсчитанный по часам, находя­щимся в космическом корабле (K'-система)? Суточным вращением Земли и ее орбитальным движением вокруг Солнца пренебречь.

Пример 2. В лабораторной системе отсчета (K-система) движется стержень со скоростью υ=0,8 с . По измерениям, произведенным в системе, его длина l оказалась равной 10 м, а угол φ, который он составляет с осью х, оказался равным 30° . Определить собственную длину l стержня в K-системе, связанной со стержнем, и угол φ0, который он составляет с осью х'

Пример 3. Кинетическая энергия Т электрона равна 1 МэВ. Определить скорость электрона.

Пример 4. Определить релятивистский импульс р и кинетическую энергию Т электрона, движущегося со скоростью υ =0,9 с (где с — скорость света в вакууме).

Пример 5. Релятивистская частица с кинетической энергией T=т0c2 (m0 — масса покоя частицы) испытывает неупругое столк­новение с такой же покоящейся (в лабораторной системе отсчета) частицей. При этом образуется составная частица. Определить: 1) релятивистскую массу т движущейся частицы; 2) релятивистскую массу т' и массу покоя m0' составной частицы; 3) ее кинетическую энергию Т'.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Пример 2. Материальная точка массой т=5 г совершает гармонические колебания с частотой ν =0,5 Гц.
Амплитуда колебаний
A=3 см.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m3=400 г укреплены шарики малых размеров массами m1=200 г и m2=300г. Стержень колеблется около горизонтальной оси, перпендикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Пример 4. Физический маятник представляет собой стержень длиной l= 1 м и массой 3т1 с прикрепленным к одному из его концов
обручем диаметром и массой т1. Горизонтальная ось Ozмаятника проходит через середину стержня перпендикулярно ему .
Определить период Т колебаний такого маятника.

Найти амплитуду А и начальную фазу результирующего колебания. Написать уравнение результирующего колебания.

Пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях,

Найти уравнение траектории точки. Построить траекторию с соблюдением масштаба и указать направление движения точки.

ВОЛНЫ В УПРУГОЙ СРЕДЕ. АКУСТИКА Основные формулы

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью =15 м/с. Период Т колебаний точек шнура равен 1,2 с, амплитуда A=2 см.

Определить:

Пример 2.На расстоянии l=4 м от источника плоской волны частотой v=440 Гц перпендикулярно ее лучу расположена стена. Определить расстояния от источ­ника волн до точек, в которых будут первые три узла и три пучности стоячей волны, возникшей в результате сложения бегущей и отраженной от стены волн. Скорость J волны считать равной 440 м/с.

Пример3. Источник зву­ка частотойi>v=18 кГц приб­лижается к неподвижно уста­новленному резонатору, на­строенному на   акустическую волну длиной l= 1,7 см. С ка­кой скоростью должен дви­гаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора? Температура T воздуха равна 290 К.

 

Основы физики и электротехники. Лекции, курсовые, задачи, учебники