Типовой
Физика

Лекции

Контрольная

Курс

На главную

Сборник задач по ядерной физике

Реакции с ядрами и частицами

Задача Оценить, какие энергии пучков должны иметь ускорители с неподвижной мишенью, эквивалентные действующим ускорителям на встречных пучках:
а) протон-антипротонному коллайдеру (лаборатория им.Ферми FNAL) с энергиями пучков
1ТэВ;
б) электрон –позитронному коллайдеру (LEP,CERN) с энергиями пучков
100 ГэВ.

Расчет энергий пучков в ускорителях с неподвижной мишенью, эквивалентных коллайдеру по (4.27), дает соответственно для энергий антипротонов

и для энергий позитронов

Относительно больший «выигрыш» в энергии для коллайдеров с электронными и позитронными пучками является следствием  зависимости энергии «эквивалентного» ускорителя с неподвижной мишенью (см. (4.27)) от массы ускоряемых частиц.

  2. Используя соотношение неопределенностей Гейзенберга, показать,
что ядра атомов не могут содержать электронов. Считать радиус
ядра равным 10-13 см.

Дано: Rя=1015 м, h= 6,62.10-34 Дж.с.

Решение. Соотношение неопределенностей Гейзенберга  выражается

формулой

где ∆х — неопределенность координаты; ∆pх — неопределенность им­пульса; h — постоянная Планка. Если неопределенность координаты принять равной радиусу ядра, т. е. ∆x=Rя, то неопределенность им­пульса электрона выразим следующим образом: ∆px=h/(2π∆x). Так как ∆px=m∆vx, то m∆vx=h/(2π∆х) и ∆vx=h/(2π∆x.m). Вычислим неопределенность скорости электрона:

Сравнивая полученное значение ∆vx со скоростью света в вакууме с=3.108 м/с, видим, что ∆vx>c, а это невозможно, следовательно, ядра не могут содержать электронов.

Электрон находится в бесконечно глубокой одномерной потенци­альной яме шириной 1 нм в возбужденном состоянии. Определить минимальное, значение энергии электрона и вероятность нахождения электрона в интервале 0<х<l/3 второго энергетического уровня.

Дано:l=1 нм=10-9 м, m = 9,1.10-31 кг, 0<х<l/3, п=2.

Найти:Emin , P2

Решение. В квантовой механике информацию о движений частиц получают из волновой функции (ψ-функция), которая отражает рас­пределение частиц или систем по квантовым состояниям. Эти части­цы характеризуются дискретными значениями энергии, импульса, момента импульса, т. е. ψ-функция является функцией состояния частиц в микромире. Решая уравнение Шредингера, получим, что для рассматриваемого случая собственная функция имеет вид

  (1)

(рис 17)

где n = 1, 2, 3, ...; х — координата частицы; l — ширина ямы. Графики собственных функций изображены на рис. 17. Согласно соотношению де Бройля двум отличающимся знаком проекциям им­пульса соответствуют две плоские монохроматические волны де Бройля, распространяющиеся в противоположных направлениях вдоль оси х. В результате их интерференции возникают стоячие вол­ны де Бройля, характеризующиеся стационарным распределением вдоль оси х амплитуды колебаний. Эта амплитуда и есть волновая функция ψ(x), квадрат которой определяет плотность вероятности пребывания электрона в точке с координатой х. Как видно из рис. 17, для значения n = 1 на ширине ямы l укладывается полови­на длины стоячей волны де Бройля, для n = 2 — целая длина стоячей волны де Бройля и т. д., т. е. в потенциальной яме могут быть лишь волны де Бройля, длина которых удовлетворяет условию

1 = пλ/2  (n= 1,2,3,.., )

Таким образом, на ширине l ямы должно укладываться целое число полуволн: λ=2l/n, (2)

Полная энергия частицы в потенциальной яме зависит от ее ширины l и определяется формулой Е=h2n2/(8ml2) (3), где m — масса частицы; n=1,2,3... . Минимальное значение энергии элек­трон будет иметь при минимальном значении п, т. е. при п=1. Сле­довательно,

Emin=h2l2/(8ml2)

Подставляя числовые значения, получим

Вероятность того, что электрон будет обнаружен в интервале от х до x + dx, равна

 Искомую вероятность находим интегрированием в пределах от 0 до l/3:

Используя соотношение sin2α = (1 - cos2α), вычисляем интеграл при условии, что электрон находится на втором энергетическом уровне:

Ответ: Еmin = 0,6.10-19 Дж, Р2=0,4

Справочник