Типовой
Физика

Лекции

Контрольная

Курс

На главную

Вычисление площадей фигур при параметрическом задании границы

Найти площадь петли кривой: ; .

Подпись:                   Рис. 2.2.           

    Р е ш е н и е. Нас будет интересовать общий вид кривой и точки ее самопересечения. Обе функции  и  определе-ны всей числовой оси . Точка самопересечения характерна тем, что в ней совпа-дают зна­чения абсциссы (и ординаты) при разных значе-ниях параметра. Так как , то абсциссы сов-падают при значениях параметра  . Чтобы функция   принимала при тех же значениях параметра  одно и то же значение, должно выполняться равенство при , откуда . Таким образом, при  и при  имеем  и , т.е. точка (0, 0) является единственной точкой самопересечения. Когда  меняется от 0 до 6, точки кривой лежат в первой четверти.  При изменении  от 0 до 3, точка  описывает нижнюю часть петли, так как в указанном промежутке  и  возрастают, а затем функция  начинает убывать, в то время как   сначала еще возрастает. На рис. 2.2 указан обход кривой, соответствующий возрастанию   (фигура остается слева). Площадь искомой петли удобно искать по формуле.

Пример 2. Вычислить . Положим , тогда , и

.

Пример 3. Вычислить . Преобразуем интеграл к виду

.

Полагая , , получим

.

Замечание 6.2.2. В простейших случаях замену переменной не выписывают явно. Например

.

Подобная запись называется внесением под знак дифференциала. Фактически, в рассмотренном примере была выполнена замена .

 

Справочник