Первообразная и производная

Частные производные

Рассмотрим функцию, заданную при $ x=(x_1;x_2)\in\mathbb{R}^2$ :

Пусть $\displaystyle f(x_1;x_2;x_3)=x_1^3x_2^2x_3^4.$

Равенство смешанных частных производных

Если две производных $\displaystyle \frac{\pat^5f}{\pat x_5\pat x_2\pat x_5\pat x_1\pat x_2}$ и $\displaystyle \frac{\pat^5f}{\pat x_1\pat x_2^2\pat x_5^2}$

Вычислим частные производные функции двух переменных $\displaystyle f(x_1;x_2)=x_1^2+x_1x_2^3+3x_1-2x_2$

Частные производные высших порядков

 

Вычислим $ \frac{\textstyle{\pat^3f}}{\textstyle{\pat x_1^2\pat x_2}}$ для функции $ f$ из предыдущего примера.

Производная сложной функции

Пусть координаты $ x_1,x_2,x_3$ зависят от $ u_1,u_2$ следующим образом: $\displaystyle x_1=\sin^2u_1; x_2=\sin u_1\cos u_2; x_3=\cos^2u_2.$

Рациональные функции и их интегрирование

Разделим с остатком $ {P(x)=x^3+5x^2-2x+1}$  -- многочлен третьей степени -- на бином $ {Q(x)=x-2}$  -- многочлен первой степени:

Разложим рациональную дробь $\displaystyle R(x)=\frac{5x^2+2x-1}{x^3+3x^2+2x+6}$

Разложим на множители многочлен третьей степени $ {Q(x)=x^3+3x^2+2x+6}$ .

Определение первообразной и её свойства

Рассмотрим функцию $ f(x)=\frac{x}{\vert x\vert}$ на объединении двух интервалов $ \mathcal{D}=(-\infty;0)\cup(0;+\infty)$ .

Рассмотрим функцию $ f(x)=x^2$ на всей числовой оси $ \mathbb{R}$  -- на интервале $ (-\infty;+\infty)$ . Тогда функция $ F(x)=\frac{x^3}{3}$  -- это первообразная для $ f(x)$ на $ \mathbb{R}$ .

 Особый класс математических теорем образуют теоремы существования. Их структура - $хÎХ А(х) (на множестве Х существует элемент х, для которого верно утверждение А(х)). Пример: если непрерывная на отрезке [a,b] функция f(x) принимает на концах отрезка значения разных знаков, то на [a,b] существует (хотя бы один) корень уравнения f(x)=0 (приведённая на иллюстрации функция имеет три корня). В некоторых случаях принципиальна единственность такого элемента х. Так, при численном решении уравнения f(x)=0 многие итерационные процессы перестают работать, если на [a,b] имеется более одного корня уравнения. Существование единственного корня обеспечит такая формулировка теоремы: "если непрерывная на отрезке [a,b] функция f(x) монотонна и принимает на концах отрезка значения разных знаков, то на [a,b] существует единственный корень уравнения f(x)=0".

Структура теорем существования и единственности: $ÎХ А(х).

2.3.3. Доказательство от противного; метод математической индукции.

 Здесь мы рассмотрит два часто применяющихся метода доказательства теорем: доказательство от противного и метод математической индукции.

 2.3.3.1. Доказательство от противного основано на доказанной нами эквивалентности (АÞВ)Û( ùВÞùА) (эквивалентны теоремы прямая и противоположная обратной). Пример - известное доказательство того факта, что  не может быть рациональным числом (предположим, что =p/q, где p/q - несократимая дробьÞp2=2 q2Þ p - чётно, p=2тÞ 4m2=2 q2Þ

Þq2=2m2Þ q - чётно - противоречие с предположением о несократимости дроби). Таким образом, для доказательства "хÎХ (А(х)ÞВ(х)) мы предполагаем, что истинно утверждение ùВ, доказываем "хÎХ (ùВ(х)ÞùА(х)), и противоречие между А(х) и ùА(х) приводит к выводу ù ùВ = В.

 2.3.3.2. Метод математической индукции часто применяется, если Х=N (или Х - бесконечное подмножество множества N). Доказательство утверждения "nÎN (А(n)ÞВ(n)) проводится в два этапа: 1. Доказывается утверждение А(1); 2. Доказывается "n³1 А(n)ÞА(n+1). Рассмотрим простой пример: доказать, что для любого натурального числа n сумма квадратов целых чисел от 1 до n равна n(n+1)(2n+1)/6:

.

При n =1 равенство справедливо:  .

Пусть равенство справедливо для n, докажем что оно справедливо для n+1: Формула доказана.

2.3.4. Бином Ньютона.

  Набор элементов , (всего m элементов), выбранных без повторения из множества  {a1, a2, a3, …, an}, содержащего n элементов, где  называется выборкой объема m из n элементов. Пусть, например, даны выборки {a1, a4}, {a2, a3, a4}, {a3, a2, a4}; все приведенные выборки разные: первые две отличаются количеством элементов, последние две выборки отличаются порядком элементов.

 Выборки , в которых учитывается не только набор элементов, но и их порядок, называются размещениями. Число различных возможных размещений из n элементов множества по m (m - объем выборки) обозначается символом . Имеет место формула

¬ 

Доказательство: если все множество содержит n элементов, то имеется ровно n вариантов выбора одного элемента; при любом выборе первого элемента вариантов выбора второго элемента будет n-1; следовательно, вариантов выбора двух элементов будет n(n-1); вариантов выбора третьего элемента из оставшихся n-2 элементов будет тоже n-2; следовательно, три элемента можно выбрать n(n -1)( n -2) способами; таким образом, для любого  числа , получаем

где ; при этом по определению полагается  1!=1, 0!=1.

 Выборки, для которых m = n, называются перестановками. Например, {a1, a2, a3}, {a2, a3, a1}, {a3, a1, a2} и т.д. Число перестановок из n элементов обозначается символом Pn, так как 

Pn =   = n(n - 1)(n - 2) ... (n – n + 1), то Pn = n!

 Если учитывается только набор элементов в выборке (независимо от их порядка), то такие выборки называются сочетаниями. Пусть, например, имеются выборки {a1, a2, a3}, {a2, a3, a1},

{a3, a6, a2}; первые две из них получаются друг из друга перестановкой элементов, поэтому как сочетания они не различаются (но различаются как перестановки); две последние выборки содержат разные наборы элементов, поэтому как сочетания они разные. Число сочетаний из n элементов по m обозначим . Если набор содержит n элементов, то из этих элементов можно сделать  размещений, при этом каждому размещению соответствует еще Pm - 1 размещение, отличающееся от него только порядком элементов, т.е. тождественные с ним как сочетания. Поэтому , то есть .

Частные случаи: если m = 0, то ; если m = 1, то ; если

m = 2, то  ; …; если m = n - 1, то ; если

m = n, то .

 

Основы физики и электротехники. Лекции, курсовые, задачи, учебники