Вычисление неберущихся интегралов

Электротехника
Расчет цепей постоянного тока
Расчет цепей переменного тока
Расчет трехфазных цепей
Примеры  решения типовых задач
Лабораторные работы
Методические указания к решению задачи
Расчет сглаживающего фильтра
Трехфазные цепи
Цепи несиносоидального тока
Математика
Интегрирование тригонометрических функций
Вычисление интегралов от рациональных функций
Интегрирование рациональных функций
Повторные интегралы
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Теорема Остроградского-Гаусса
Независимость криволинейных интегралов от пути интегрирования
Физические приложения двойных интегралов
Физические приложения криволинейных интегралов
Физические приложения поверхностных интегралов
Физические приложения тройных интегралов
Теорема Стокса
Поверхностные интегралы первого рода
Поверхностные интегралы второго рода
Тройные интегралы в декартовых координатах
Тройные интегралы в цилиндрических координатах
Тройные интегралы в сферических координатах
Производная показательной и логарифмической функции
Производная степенной функции
Производная произведения и частного функций
Дифференцирование и интегрирование степенных рядов
Найти производную функции
Примеры вычисления производной
Производная обратной функции
Логарифмическое дифференцирование
Исследование функций с помощью производных
Физика
Электродинамика
Электростатика
Электрический ток
Термодинамика
Решение задач
Основные операции над векторами
Кинематика твердого тела
Силы Виды взаимодействий
Закон сохранения импульса
Гравитация Законы Кеплера
Неинерциальные системы отсчета
Механические колебания
Физический маятник
Математический маятник
Резонанс
Специальная теория относительности

Преобразования Лоренца

Математическая физика
Химия
Примеры решения задач
контрольной работы
Современная теория строения
атомов и молекул
Контрольные задания
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Химическая кинетика
Электролиз
Начертательная геометрия
Сечение геометрического тела
Аксонометрические проекции
Сборочный чертеж
Построение тел вращения
Развертка прямой призмы
Машиностроительное черчение
Профиль  резьбы
Работа «Соединение болтом»
Работа «Соединение шпилькой»
Сварные соединения
Разновидность  крепежных изделий
Выполнить эскизы с натуры
Шероховатостью поверхности
Выполнениечертежа сборочной единицы
Деталирование чертежа общего вида
Построение смешанного сопряжения.
Направления штриховки в разрезах
Сопромат
Деформации и перемещения при кручении валов
Расчет статически неопределимых балок
Действие с силами и моментами
Расчеты на прочность по допускаемым напряжениям
Расчет цилиндрических витых пружин

Примеры решения задач на прочность

Ядерная энергетика
Реакторы атомных станций
Ядерное топливо и ядерные отходы
Ядерно-энергетические транспортные установки
Блочный щит управления энергоблока
Реакторы на быстрых нейтронах
АЭС с реакторами ВВЭР нового поколения
РБМК - Реактор Большой Мощности Канальный
ВВЭР и РБМК: сравнительные характеристики
Энергосберегающие технологии
Альтернативная энергетика
Информатика
Тонкая клиентная сеть
Создание корпоративной Webсети
Восстановление ЛВС после аварий
Беспроводные сети
Серверы масштаба предприятия и суперсерверы
Протоколы сетевого управления
Прокси-серверы
Оценка эффективности локальной сети
Производительность рабочих станций и серверов ЛВС
Кабельные системы для локальных сетей
История искусства
Архитектура
Интерьеры античности и возраждения в Италии
Вид на Акрополь
План терм Константина; разрез и фасады
План  и разрез Сакристии Сан Лоренцо
Интерьеры XIV—XV веков и эпохи классицизма в России
Интерьеры Успенского собора
Усадьба «Высокие горы»
 
Цифровая фотография

 

Неберущимся является интеграл $\displaystyle \int e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}\Phi(x)+C.$

Не берётся интеграл $\displaystyle \int\frac{dx}{\ln x}=\mathop{\mathrm{li}}\nolimits (x)+C$

Ещё один неберущийся интеграл: $\displaystyle \int\frac{\cos x}{x}\,dx=\mathop{\mathrm{Ci}}\nolimits (x)+C.$

Системы линейных уравнений.

Не берётся также интеграл $\displaystyle \int\frac{\sin x}{x}\,dx=\mathop{\mathrm{Si}}\nolimits (x)+C.$

   Выразим через функцию Лапласа следующий интеграл: $\displaystyle \int e^{-x^2}dx.$

Задание. Самостоятельно доказать формулу 12 и обобщение формул 11, 12 на большее число множеств:

13. ;  14. .

 

 Опр. 1.3.2. Множества, между которыми можно установить взаимно-однозначное соответствие, называются равномощными (имеющими одинаковую мощность, эквивалентными). Равномощность множеств обозначается символом "~": А~В.

 Так, для приведённых выше множеств взаимно-однозначное соответствие устанавливается соотношениями -2«с, 0«ф, 3«а, 8«х. Однако ценность опр. 1.8 эквивалентности множеств заключается в том, что оно применимо к любым, в том числе бесконечным, множествам. Так, рассмотрим множество N натуральных чисел и множество N2={ 2, 4, 6, …} четных чисел. Взаимно-однозначное соответствие между этими множествами устанавливается соотношениями n«2n, следовательно, эти множества равномощны: N~N2. Этот пример показывает, что собственное подмножество может быть равномощным всему множеству; естественно, это может быть только для бесконечных множеств.

 Соотношение ~ эквивалентности множеств транзитивно: если А~В, В~С, то А~С. Взаимно-однозначное соответствие между элементами а множества А и с множества С устанавливается по цепочке а «в«с.

Опр. 1.3.4. Множество, эквивалентное множеству натуральных чисел N называется счётным множеством.

 Другими словами, множество счётно, если его элементы можно перенумеровать всеми натуральными числами. Счётны множества N2 чётных натуральных чисел, множество нечётных чисел (соответствие n«2n-1), множество всех целых чисел {0,±1,±2,±3,±4,…} (соответствие 1«0, 2«-1, 3«1, 4«-2, 5«2, …; вообще n«(n-1)/2 для нечётных n и n«-n/2 для чётных n).

 Равномощны множества точек любых двух отрезков [a,b] и [c,d] (соответствие можно установить, например, с помощью центрального проектирования; рис. 7). Так же можно доказать равномощность множеств точек любых двух интервалов. Множество точек интервала равномощно множеству точек всей прямой (рис. 8). Сложнее ответить на вопрос, равномощны ли множества точек отрезка и интервала. Положительный ответ на этот вопрос даёт следующая теорема:

 Теор. 1.3.1. Если множество А равномощно подмножеству В1 множества В, а множество В равномощно подмножеству А1 множества А, то множества А и В равномощны.

Опр. 1.3.5. Множество, эквивалентное множеству точек любого отрезка, называется множеством мощности континуум.

 Рассмотрим более подробно свойства счётных множеств и множеств мощности континуум.

1.3.1. Счётные множества.

Любое бесконечное подмножество В счётного множества А также счётно.

Элементы В можно перенумеровать в порядке их следования в А; так как В бесконечно, для нумерации будут использованы все натуральные числа.

Объединение конечной или счётной совокупности счётных множеств - счётное множество.

Докажем это утверждение сначала для двух счётных множеств А={a1, a2, a3,…} и В={b1, b2, b3,…}. Выпишем все элементы этих множеств в одну строчку a1, b1, a2, b2, a3, b3,… и сопоставим каждому элементу его номер в этой строчке (если Ø, т.е. какой-то элемент входит и в А, и в В, он получает номер только в первый раз, а во второй раз пропускается). В результате будут пронумерованы все элементы множества , что доказывает его счётность. Также доказывается счётность объединения трёх, четырёх и вообще любого конечного числа счётных множеств. В случае счётного числа счётных множеств {A1, A2, A3, A4, …}способ нумерации может быть, например, таким:

A1={a11, a12, a13, a14,…}

A2={a21, a22,  a23, a24,…}

A3={a31, a32, a33, a34,…}

A4={a41, a42, a43, a44,…}

…………………………

Нумерация начинается с элемента a11 и продолжается в направлении стрелок, повторяющиеся элементы при этом пропускаются.

 

 
Основы физики и электротехники. Лекции, курсовые, задачи, учебники