Интегралы от произведений синусов и косинусов Найдём объём тела Вычислим площадь поверхности вращения Вычислим длину дуги линии Вычисление длины плоской линии Найдём уравнения касательной

[an error occurred while processing this directive]

Частные производные

Рассмотрим функцию, заданную при $ x=(x_1;x_2)\in\mathbb{R}^2$ :

 

$\displaystyle f(x)=\left\{\begin{array}{ll}
\frac{\textstyle{2x_1x_2}}{\textst...
...x_1;x_2)\ne(0;0);\\
0,&\text{ если }x_1=0\text{ и }x_2=0.
\end{array}\right.$

Эта функция разрывна в точке $ (0;0)$ , поскольку в любой, как угодно малой окрестности начала координат имеются точки вида $ ({\varepsilon};{\varepsilon})$ , где $ {\varepsilon}\ne0$ , в которых значение функции равно

 

$\displaystyle f({\varepsilon};{\varepsilon})=\frac{2{\varepsilon}\cdot{\varepsilon}}{{\varepsilon}^2+{\varepsilon}^2}=1,$

а также точки вида $ ({\varepsilon};-{\varepsilon})$ , где $ {\varepsilon}\ne0$ , в которых значение функции равно Интегрирование некоторых тригонометрических функций Курс лекций по математике

 

$\displaystyle f({\varepsilon};-{\varepsilon})=\frac{2{\varepsilon}\cdot(-{\varepsilon})}{{\varepsilon}^2+{\varepsilon}^2}=-1,$

а значение $ f(0;0)$ равно 0.

Однако ограничение функции $ f$ как на прямую $ x_2=0$ , так и на прямую $ x_1=0$ , проходящие через начало координат, тождественно равно 0:

 

$\displaystyle f\vert _{x_2=0}=f(x_1;0)=0;\
f\vert _{x_1=0}=f(0;x_2)=0,$

так что и производные от этих ограничений в точке 0 равны 0, то есть

 

$\displaystyle \frac{\partial f}{\partial x_1}(0;0)=0;\
\frac{\partial f}{\partial x_2}(0;0)=0.$

Итак, обе частные производные в начале координат существуют, но функция разрывна в начале координат Дифференциалы высших порядков также определяются индуктивно: дифференциалом второго порядка (или вторым дифференциалом) функции называется дифференциал от её первого дифференциала; дифференциалом третьего порядка называется дифференциал от второго дифференциала; и вообще, дифференциалом n-го порядка функции называется дифференциал от её n-1-го дифференциала. При вычислении высших дифференциалов необходимо учитывать, что дифференциал независимой переменной - произвольная и независимая от х величина, которая при дифференцировании рассматривается как постоянная.
Рациональные функции и их интегрирование