Поляризация диэлектриков. Теорема Гаусса для вектора Условия на границе двух диэлектриков начало


Условия на границе двух диэлектриков

Рассмотрим поведение векторов E и D на границе раздела однородных изотропных диэлектриков.

Рис. 5.5

Для установления связи между тангенциальными составляющими вектора E по обе стороны границы воспользуемся теоремой о циркуляции вектора E. Выберем контур небольшой длины l, как показано на рис. 5.5 и в предположении, что векторы E1 и E2 с обеих сторон границы постоянны в пределах контура, запишем на основании этой теоремы

 

 

E2t + E1t' + C' = 0

(5.27)

где проекции вектора E взяты в непосредственной близости от границы раздела на направление обхода контура, указанное на рисунке стрелками, а C' - вклад в циркуляцию от перпендикулярных к границе сторон контура. В пределе при стремящейся к нулю высоте контура этим вкладом можно пренебречь и тогда

E2t + E1t' = 0

(5.28)

Если внутри диэлектрика 1 проекцию вектора E взять не на орт t', а на общий орт t, то так как E1t' = -E1t , то получим

E2t - E1t = 0

(5.29)

или

E2t = E1t

(5.30)

Иными словами, тангенциальная составляющая вектора E одинакова по обе стороны границы раздела.

Заменив согласно (5.26) проекции вектора E проекциями вектора D, деленными на eoe, получим

(5.31)

откуда

(5.32)

Обратимся теперь к нормальной составляющей вектора D. Воспользуемся для этого теоремой Гаусса для этого вектора. Выбирая поверхность интегрирования как показано на рис. 5.4 и следуя тем же рассуждениям, которые привели к выражению (5.18), получим

D2n - D1n= s

(5.33)

Из этого соотношения следует, что при наличии на границе раздела стороннего заряда с поверхностной плотностью s нормальная составляющая вектора D терпит разрыв. При отсутствии стороннего заряда на границе

D1n = D2n

(5.34)

Нормальные составляющие вектора E с разных сторон границы раздела относятся тогда на основании (5.26) , как

(5.35)

 

Рис. 5.6

Как следует из полученных соотношений (5.30) и (5.35) нормальная и тангенциальная составляющие вектора E на границе раздела ведут себя по разному. В результате линии вектора E испытывают преломление (рис. 5.6). Найдем соотношение между углами a1 и a2 для случая, когда сторонних зарядов на границе раздела нет. Как видно из рисунка

(5.36)

Отсюда на основании (5.30) и (5.35) получаем

(5.37)

Если на среда 1 - проводник, а 2 - диэлектрик, то из соотношения (5.33) следует, что

Dn =s,

где n - внешняя к проводнику нормаль. Действительно, т.к. в проводнике E=0, то и P=0. Тогда, так как D = e0E+P, то и D1n =0.

Если к заряженному проводнику прилегает однородный диэлектрик, то на границах диэлектрика выступают связанные поверхностные заряды. Найдем их поверхностную плотность s'. Следуя рассуждениям, которые привели к выводу соотношения (4.1), в данном случае получим для нормальной составляющей вектора E

(5.38)

Но

(5.39)

С учетом (5.39) из (5.38) получим

(5.40)

Основы физики и электротехники. Лекции, курсовые, задачи, учебники