Поляризация диэлектриков. Теорема Гаусса для вектора Условия на границе двух диэлектриков начало


Поляризация диэлектриков

Диэлектрики - это вещества, которые практически не проводят электрический ток. Поведение диэлектриков в электрическом поле определяется их внутренним строением. Как известно, мельчайшей частицей вещества, сохраняющей его химические свойства, является молекула. Молекулы состоят из атомов, в состав которых входят положительно заряженные ядра и отрицательно заряженные электроны. В целом молекулы нейтральны. Согласно теории ковалентных связей устойчивость молекул достигается путем образования одной или нескольких пар электронов, которые становятся общими для соединяющихся атомов, т. е. входят одновременно в состав оболочек двух атомов.

Для каждого рода зарядов - положительных (ядер) и отрицательных (электронов) - можно найти такую точку, которая будет являться как бы их "электрическим центром тяжести". Эти точки называются полюсами молекулы. Если в молекуле электрические центры тяжести положительных и отрицательных зарядов совпадут, то молекула будет неполярной. Но если молекула построена несимметрично, например состоит из двух разнородных атомов, то общая пара электронов может быть в большей или меньшей степени смещена в сторону одного из атомов. Очевидно, что в этом случае, вследствие неравномерного распределения положительных и отрицательных зарядов внутри молекулы, их электрические центры тяжести не совпадут и получится молекула, называемая полярной.

Для описания макроскопических электрических свойств диэлектриков достаточно ограничиться представлением о том, что в них отсутствуют свободные носители заряда, и при помещении диэлектрика в электрическое поле в материале возбуждается множество микроскопических диполей. В случае неполярных молекул это происходит путем смещения в пределах молекул их положительных зарядов в направлении внешнего поля и отрицательных в противоположном направлении (рис. 5.1).

Рис. 5.1

Приобретаемый молекулой дипольный момент пропорционален напряженности поля, в котором находится молекула. В системе СИ он записывается, как

(5.1)

где коэффициент пропорциональности b называется поляризуемостью молекулы.

Для вещества, состоящего из полярных молекул, под действием момента сил (3.9) происходит преимущественное выстраивание молекул в направлении внешнего поля. В обоих случаях (неполярных и полярных молекул) в результате появляется дипольный момент и у всего объема диэлектрика. Средний дипольный момент, индуцированный полем в единице объема, называется поляризованностью диэлектрика:

(5.2)

где суммирование производится по всем молекулам, находящимся в объеме DV, а дипольный момент p каждой молекулы определяется суммированием по всем заряженным частицам, входящим в молекулу:

(5.3)

где ei - заряд каждой частицы, а li - ее смещение под действием электрического поля.

Домножив и разделив правую часть (5.2) на число молекул DN, находящихся в объеме DV, получим еще одно выражение для поляризованности:

(5.4)

где n = DN / DV - концентрация молекул, а < p > - средний диполный момент молекулы.

Вообще говоря, P меняется в диэлектрике от точки к точке, но для широкого класса веществ в каждой точке P ~ E. Существуют вещества, обладающие поляризованностью и в отсутствие внешнего поля, однако здесь они не рассматриваются.

Поскольку в целом молекулы нейтральны, то именно дипольный момент и определяет электрическое поле, создаваемое самим материалом, когда его помещают во внешнее поле. В силу принципа суперпозиции поле внутри диэлектрика есть сумма внешнего поля и поля от всех диполей, индуцированных в диэлектрике:

(5.5)

где E0 - напряженность поля сторонних зарядов, а E' - связанных зарядов. Связанными зарядами называются нескомпенсированные заряды, появляющиеся в результате поляризации молекул диэлектрика, тогда как сторонними - свободные заряды, находящиеся в диэлектрике или вне его. E0 и E' представляют собой макрополя, т.е. усредненные по некоторому малому объему микрополя, создаваемые сторонними и связанными зарядами, соответственно.

Так как каждая молекула поляризуется под воздействием как поля сторонних зарядов, так и поля, создаваемого всеми другими поляризованными молекулами, то поляризованность диэлектрика пропорциональна напряженности именно суммарного поля (5.5):

(5.6)

где греческой буквой "каппа" обозначена, так называемая, диэлектрическая восприимчивость. Для изотропных диэлектриков k - просто коэффициент, и векторы P и E в этом случае совпадают по направлению. В общем случае это не так. Заметим, что пропорциональность поляризованности напряженности поля имеет место для широкого класса диэлектриков, однако существуют вещества (сегнетоэлектрики) для которых зависимость P от E имеет гораздо более сложный характер, чем (5.6). Здесь они не рассматриваются.

Рис. 5.2

При поляризации однородного диэлектрика (см. рис. 5.1) смещения зарядов внутри любого выбранного слоя внутри диэлектрика происходят таким образом, что количество связанного заряда, покидающего слой, равно заряду, входящему в него. Таким образом объемный заряд внутри диэлектрика не образуется. В поверхностных же слоях образуется связанный поверхностный заряд . В случае же неоднородного диэлектрика в каждый слой, мысленно выделенный внутри материала, с одной стороны входит больше заряда, чем выходит с другой, и связанный заряд образуется не только на поверхности, но и в объеме диэлектрика, как это показано на рис. 5.2.

 

Основы физики и электротехники. Лекции, курсовые, задачи, учебники