Электростатика примеры решения задач

Электротехника
Расчет цепей постоянного тока
Расчет цепей переменного тока
Расчет трехфазных цепей
Примеры  решения типовых задач
Лабораторные работы
Методические указания к решению задачи
Расчет сглаживающего фильтра
Трехфазные цепи
Цепи несиносоидального тока
Математика
Интегрирование тригонометрических функций
Вычисление интегралов от рациональных функций
Интегрирование рациональных функций
Повторные интегралы
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Теорема Остроградского-Гаусса
Независимость криволинейных интегралов от пути интегрирования
Физические приложения двойных интегралов
Физические приложения криволинейных интегралов
Физические приложения поверхностных интегралов
Физические приложения тройных интегралов
Теорема Стокса
Поверхностные интегралы первого рода
Поверхностные интегралы второго рода
Тройные интегралы в декартовых координатах
Тройные интегралы в цилиндрических координатах
Тройные интегралы в сферических координатах
Производная показательной и логарифмической функции
Производная степенной функции
Производная произведения и частного функций
Дифференцирование и интегрирование степенных рядов
Найти производную функции
Примеры вычисления производной
Производная обратной функции
Логарифмическое дифференцирование
Исследование функций с помощью производных
Физика
Электродинамика
Электростатика
Электрический ток
Термодинамика
Решение задач
Основные операции над векторами
Кинематика твердого тела
Силы Виды взаимодействий
Закон сохранения импульса
Гравитация Законы Кеплера
Неинерциальные системы отсчета
Механические колебания
Физический маятник
Математический маятник
Резонанс
Специальная теория относительности

Преобразования Лоренца

Математическая физика
Химия
Примеры решения задач
контрольной работы
Современная теория строения
атомов и молекул
Контрольные задания
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Химическая кинетика
Электролиз
Начертательная геометрия
Сечение геометрического тела
Аксонометрические проекции
Сборочный чертеж
Построение тел вращения
Развертка прямой призмы
Машиностроительное черчение
Профиль  резьбы
Работа «Соединение болтом»
Работа «Соединение шпилькой»
Сварные соединения
Разновидность  крепежных изделий
Выполнить эскизы с натуры
Шероховатостью поверхности
Выполнениечертежа сборочной единицы
Деталирование чертежа общего вида
Построение смешанного сопряжения.
Направления штриховки в разрезах
Сопромат
Деформации и перемещения при кручении валов
Расчет статически неопределимых балок
Действие с силами и моментами
Расчеты на прочность по допускаемым напряжениям
Расчет цилиндрических витых пружин

Примеры решения задач на прочность

Ядерная энергетика
Реакторы атомных станций
Ядерное топливо и ядерные отходы
Ядерно-энергетические транспортные установки
Блочный щит управления энергоблока
Реакторы на быстрых нейтронах
АЭС с реакторами ВВЭР нового поколения
РБМК - Реактор Большой Мощности Канальный
ВВЭР и РБМК: сравнительные характеристики
Энергосберегающие технологии
Альтернативная энергетика
Информатика
Тонкая клиентная сеть
Создание корпоративной Webсети
Восстановление ЛВС после аварий
Беспроводные сети
Серверы масштаба предприятия и суперсерверы
Протоколы сетевого управления
Прокси-серверы
Оценка эффективности локальной сети
Производительность рабочих станций и серверов ЛВС
Кабельные системы для локальных сетей
История искусства
Архитектура
Интерьеры античности и возраждения в Италии
Вид на Акрополь
План терм Константина; разрез и фасады
План  и разрез Сакристии Сан Лоренцо
Интерьеры XIV—XV веков и эпохи классицизма в России
Интерьеры Успенского собора
Усадьба «Высокие горы»
 
Цифровая фотография

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ

Пример 1. Три одинаковых положительных заряда Q1=Q2=Q3=1 нКл расположены по вершинам равностороннего треугольника (рис. 13.1). Какой отрицательный заряд Q4 нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым *?

Пример 3. Тонкий стержень длиной l=30 см (рис. 13.3) несет равномерно распределенный по длине заряд с линейной плотностью t=1 мкКл/м. На расстоянии r0=20 см от стержня находится заряд Q1=10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ

Пример 1. Электрическое поле создано двумя точечными зарядами: Q1=30 нКл и Q2= –10 нКл. Расстояние d между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов.

Пример 2. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда s1=0,4 мкКл/м2 и s2=0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

Пример 3. На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь S каждой пластины конденсатора равна 100 см2 Определить силу F, с которой притягиваются пластины. Поле между пластинами считать однородным.

Пример 4. Электрическое поле создано, бесконечной плоскостью, заряженной с поверхностной плотностью s=400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью t=100 нКл/м. На расстоянии r=10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.

Пример 5. Точечный заряд Q=25 нКл находится в ноле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью s=2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см. >

Пример 6. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью t=30 нКл/м. На расстоянии а=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол b=30° с линией напряженности, проходящей через середину площадки.

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

ПОТЕНЦИАЛ. ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. РАБОТА ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА В ПОЛЕ

Пример 1. Положительные заряды Q1=3 мкКл и Q2=20 нКл находятся в вакууме на расстоянии r1=l,5 м друг от друга. Определить работу A, которую надо совершить, чтобы сблизить заряды до расстояния r2=1 м.

Пример 2. Найти работу А поля по перемещению заряда Q=10 нКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя разноименно заряженными с поверхностной плотностью s=0,4 мкКл/м2 бесконечными параллельными плоскостями, расстояние l между которыми равно 3 см.

Пример 3. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см.

Пример 4. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части.

Пример 5. Электрическое поле создано тонким стержнем, несущим равномерно распределенный по длине заряд t=0,1 мкКл/м. Определить потенциал j поля в точке, удаленной от концов стержня на расстояние, равное длине стержня.

Пример 6. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Пример 7. Определить начальную скорость υ0 сближения про­тонов, нахо­дя­щихся на достаточно большом расстоянии друг от друга, если минимальное расстояние rmin, на которое они могут сблизиться, равно 10-11 см.

 Пример 8. Электрон без на­чальной скорости прошел разность потен­циалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряжен­ного до разности потенциалов Ul=100 В, по ли­нии АВ, парал­лельной пластинам (рис. 15.4). Рас­стояние d между пла­стинами равно 2 см. Длина l1 ­пластин конденсатора в нап­равлении по­лета элек­трона, равна 20 cм. Определить рас­стояние ВС на экране Р, от­стоящем от конденсатора на l2=1 м.

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ СВОЙСТВА ДИЭЛЕКТРИКОВ

 Пример 1. Диполь с электрическим моментом р=2 нКл·м находится в однородном электрическом поле напряженностью Е=30 кВ/м. Вектор р составляет угол α=60˚ с направлением си­ловых линий поля. Опреде­лить произведенную внешними силами работу А поворота диполя на угол β=30°.

Пример 2. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды рас­положены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потен­циала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.

Пример 3. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Опре­делить поляризуемость α атома йода.

Пример 4. Криптон находится под давлением р=10 МПа при температуре Т= 200 К, Определить: 1) диэлектрическую проницаемость ε криптона; 2) его поляризованность Р, если напряженность Е0 внешнего электрического поля равна 1 MB/м. Поляризуемoсть α криптона равна 4,5·10-29 м3,

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и по­казатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

ЭЛEКTPИЧECКAЯ EMКOCTЬ. КOHДEHCATOPЫ

Пример 1. Определить электрическую емкость С плоского кон­денсатора с двумя слоями диэлектриков: фарфора толщиной d1=2 мм и эбонита толщиной d2= 1,5 мм, если площадь S пластин равна 100 см2.

Пример 2. Два плоских конденсатора одинаковой электроемко­сти С12соединены в батарею последовательно и подключены источнику тока с электродвижущей силой ε. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε =7?

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПPOBOДHИКA. ЭHEPГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Пример 1. Конденсатор электроемкостью C1=З мкФ былзаря­жен до разности потенциалов U1=40 В. После отключения oт источника тока конденсатор был соединен параллельно с другим незаря­женным конденсатором электроемкостью С2=5 мкФ. Определить энергию ΔW, израсходованную на образование искры в момент присоединения второго конденсатора.

Пример 2. Плоский воздушный конденсатор с площадью S пла­стины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раз­движению пластин от расстояния d1 = 1 см до d2=3 см в двух слу­чаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенны­ми к нему.

Пример 3. Плоский конденсатор заряжен до разности потенциалов U= 1 кВ. Расстояние d между пластинами равно 1 см. ДИЭ;/1ект­рик - стекло. Определить объемную плотность энергии поля кон­денсатора.

  Пример 4. Металлический шар радиусом R=3 cм несет заряд Q=20 нКл. Шар окружен слоем парафина толщиной d=2см. Определить энергию W электрического поля, заключенного в слое ди­электрика.

Основы физики и электротехники. Лекции, курсовые, задачи, учебники