Сопромат
Электротехника
Курсовая
Типовой
Фото
Энергетика
Геометрия
Физика

Лекции

Математика
Искусство
Контрольная

Курс

Примеры
Архитектура
На главную

Атомная и ядерная физика начало

Тема5. Ядерные реакции

Процесс превращения ядер одних элементов в ядра других называется ядерной реакцией. Ядерные реакции бывают самопроизвольные и искусственные. Примером самопроизвольных ядерных реакций являются реакции радиоактивного распада ( см. тему "Радиоактивность").
Искусственные ядерные реакции возникают при бомбардировке ядер элементов быстрыми элементарными частицами или другими ядрами. Наибольшей эффективностью обладают a-частицы. При ядерных реакциях должны выполняться законы сохранения заряда, массы и энергии.

 

В 1919 году Резерфорд впервые осуществил ядерные превращения, с помощью которого экспериментально доказал, что в состав атомного ядра входят протоны (1p1). Он бомбардировал  a-частицами высокой энергии ядра азота 7N14. Ядерная реакция, осуществленная Резерфордом, такова:

7N14 +2He4=> 8O17+1p1

Элемент 8O17 является изотопом кислорода

Впоследствии ядерные реакции с выделением протонов были осуществлены и путем бомбардировки a-частицами ядер натрия, алюминия, фтора и т.д.
Протон - элементарная частица, имеющая следующие характеристики:

bullet

заряд протона  q =1.6·10-19 Кл

bullet

масса протона  mp =1а.е.м.=1.6724·10-27 кг

Ядра всех изотопов ( изотопы- элементы с одинаковым зарядовым числом, но разными массовыми числами) водорода содержат по 1 протону:

bullet

протий-1H1

bullet

дейтерий-1H2

bullet

тритий-1H3

Существование изотопов элементов говорит о наличии в ядрах

незаряженных частиц, которые не изменяют зарядового числа (Z), но изменяют массу ядра. Эти частицы назвали нейтронами (0n1).

Обнаружил нейтроны в 1932 г. Чедвик, осуществив реакцию взаимодействия a-частиц с ядрами бериллия:

4Be9 +2He4  => 6C12 +0n1

Здесь  6C12 - изотоп углерода, 0n1-нейтрон.

Нейтрон является элементарной частицей со следующими характеристиками:

bullet

заряд нейтрона q = 0 (нейтральная частица)

bullet

масса нейтрона  mn= 1.6748·10-27 кг

 Цепная ядерная реакция
 
Реакция деления тяжелых ядер осуществлена впервые на уране 92 U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации ( 1 МэВ). Эту энергию ядро урана получает, захватывая нейтрон (см.рис.). Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка сильно радиоактивны и испускают 2 или 3 вторичных нейтрона. Вторичные нейтроны поглощаются соседними ядрами урана и вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением огромной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Первую управляемую ядерную реакцию осуществил Ферми (США) в 1942 г. Цепная реакция деления осуществлена в двух формах:

bullet

неуправляемая (атомная бомба)

bullet

управляемая (ядерный реактор)

Масса и энергия связи ядра

Измерения показывают, что масса любого ядра mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: mя < Zmp + Nmn. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.

Разность масс

Δ = Zmp + Nmn – mя

(16.4)

называется дефектом массы.

По дефекту массы можно определить с помощью формулы  E = mc2 энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра Eсв:

Eсв = Δ c2 = (Zmp + Nmn – mя)c2.

(16.5)

Энергия связи ядра равна той работе, которую нужно совершить, чтобы разделить образующие ядро нуклоны и удалить их друг от друга на такие расстояния, при которых они практически не взаимодействуют друг с другом.

Равенство (16.5) практически не нарушится, если заменить массу протона тр массой атома водорода тн, а массу ядра тя — массой атома mа. Действительно, если пренебречь сравнительно ничтожной энергией связи электронов с ядрами, указанная замена будет означать добавление к уменьшаемому и вычитаемому выражения, стоящего в фигурных скобках, одинаковой величины, равной Zme. Таким образом, формуле (16.5) можно придать вид

(16.6)

Удельная энергия связи. Энергия связи, приходящаяся на один нуклон, т. е. Есв / А, называется удельной энергией связи нуклонов в ядре. Эта величина характеризует меру прочности ядра: чем больше Есв / А, тем ядро прочнее. Удельная энергия связи зависит от массового числа А. График этой зависимости показан на рис.16.1. Сильнее всего связаны нуклоны в ядрах с массовыми числами порядка 50—60 (т. е. для элементов от Сг до Zn), Энергия связи для этих ядер достигает 8,7 МэВ/нуклон. С ростом А удельная энергия связи постепенно уменьшается; для самого тяжелого природного элемента— урана — она составляет 7,5 МэВ/нуклон.

Рис. 16.1. Удельная энергия связи ядер.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными. В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми. Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания для обеспечения устойчивости требуются дополнительные нейтроны.

Такая зависимость удельной энергии связи от массового числа делает энергетически возможными два процесса: 1) деление тяжелых ядер на несколько более легких ядер и 2) слияние (синтез) легких ядер в одно ядро. Оба процесса должны сопровождаться выделением большого количества энергии (см.ниже).

Тяжелые ядра не распадаются самопроизвольно на более легкие ядра с большей энергией связи, так как для того чтобы разделиться, тяжелое ядро должно пройти через ряд промежуточных состояний, энергия которых превышает энергию основного состояния ядра. Следовательно, для процесса деления ядру требуется дополнительная энергия (энергия активации), которая затем возвращается обратно, приплюсовываясь к энергии, выделяющейся при делении за счет изменения энергии связи. В обычных условиях ядру неоткуда взять энергию активации, вследствие чего тяжелые ядра не претерпевают спонтанного деления.

Справочник