Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность

Лекции по физике теория газов

Излучение различных тел различно. Оно зависит от природы тела, температуры, состояния поверхности, а для газов – еще от толщины слоя и давления. Большинство встречающихся в природе и технике твердых и жидких тел имеет значительную поглощательную и излучательную способность. Вследствие этого в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои. Газообразные тела имеют значительно меньшее излучение, чем твердые и жидкие тела. Поэтому в излучении газов участвуют все его частицы, и процесс теплового излучения носит объемный характер.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м2), а T1 и T2 – температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10–8 Вт/(м2 DК4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м2. Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

В сосудах Дьюара применяются способы для защиты кипятка от охлаждения всеми тремя способами теплообмена. Пример

Второй закон термодинамики. Взгляните еще раз на все рисунки в этом параграфе. У вас не вызывает удивления, что теплота переходит от спички – к воздуху, от Солнца – к мальчикам, от куба Лесли – к ладоням? Конечно, ничего удивительного нет! Эти и другие многие наблюдения приводят нас к обобщению, что самостоятельно теплота переходит только от тел с более высокой температурой к телам с меньшей температурой, но не наоборот. Так гласит второй закон термодинамики. Он указывает на однонаправленность и, следовательно, необратимость явлений теплообмена.

Закон радиоактивного распада

 Радиоактивный распад – явление статистическое, поэтому все предсказания носят вероятностный характер. Самопроизвольный распад большого числа ядер атомов подчиняется закону радиоактивного распада

 N=N0exp(-lt), (2)

где N0 – число нераспавшихся ядер в момент времени t=0; N – число нераспавшихся ядер в момент времени t; l - постоянная радиоактивного распада, она характеризует вероятность распада ядер за 1с. Величина t=1¤l - является средним временем жизни изотопа, за время Dt=t число нераспавшихся ядер убывает в е =2,72 раз. Вводят также понятие периода полураспада Т1/2 – время, за которое распадается половина радиоактивных ядер, т.е. N=N0/2. Подставляя это условие в (2), находим

 N0/2=N0exp(-lT1/2), отсюда

 Т1/2=ln2/l=0,693/l=0,693t. (3)

 Период полураспада для естественно-радиоактивных элементов колеблется от 10-7 с до многих миллиардов лет. Активность радиоактивного вещества характеризует число распадов ядер в 1с:

 А=|dN/dt|=lN0exp(-lt)=A0exp(-lt). (4)

 Единица активности в СИ – беккерель (Бк). 1 Бк – это активность, при которой за 1с происходит один распад ядра. Часто используется внесистемная единица активности – кюри (Ки), 1Ки=3,7×1010 Бк.

 Поглощенная доза излучения – физическая величина, равная отношению энергии излучения к массе облучаемого вещества. Единица поглощенной дозы излучения – грей (Гр): 1 Гр = 1 Дж/кг – доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

 Экспозиционная доза излучения ­– физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

  Единица экспозиционной дозы излучения – кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р = 2,58´10-4 Кл/кг.

 Биологическая доза – величина, определяющая воздействие излучения на организм. Единица биологической дозы – биологический эквивалент рентгена (бэр): 1 бэр – доза любого вида ионизирующего излучения, производящее такое же биологическое действие, как и доза рентгеновского или g-излучения в 1 Р (1 бэр = 10-2 Дж/кг).

  Мощность дозы излучения – величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица – грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица – ампер на килограмм (А/кг)).

Количество теплоты. Единицы измерения количества теплоты. Количество теплоты - энергия, которую тело теряет или получает при теплопередаче. Единица измерения: Джоуль, по определению. Опыт: Количество теплоты, необходимое для нагревания тела (или выделяемое им при остывании), зависит: " от рода вещества, из которого состоит тело, " от массы этого тела, " от величины изменения его температуры.
На главную