Сопромат
Электротехника
Курсовая
Типовой
Фото
Энергетика
Геометрия
Физика

Лекции

Математика
Искусство
Контрольная

Курс

Примеры
Архитектура
На главную

Лекции по физике теория газов

Теплопроводность.

Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Теплопроводность

В существовании теплопроводности нас убеждает ряд наблюдений и экспериментов.

Нагревание кастрюли на электрической плитке происходит через теплопроводность

Если твердое тело нагревается или охлаждается, то внутри его наблюдается неравномерное распределение температуры, что приводит к перемещению тепла из одних точек тела в другие. В этом случае тепловой поток будет направлен из участков тела с большой температурой к участкам с меньшей температурой.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).

Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

, где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения.

Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры.

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.

Температурный градиент является мерой интенсивности изменения температуры в данном направлении.

Положив в основу предположение о наличии линейной зависимости между тепловым потоком и температурным градиентом, Фурье получил закон теплопроводности, согласно которому плотность теплового потока пропорциональна температурному градиенту

 Знак минус в уравнении показывает, что плотность потока  и температурный градиент имеют противоположное направление, или в направлении потока тепла температура уменьшается. Коэффициент пропорциональности  назван коэффициентом теплопроводности (теплопроводностью).

В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.

Практические занятия являются одной из важнейших компонент учебного процесса по физике. Они способствуют приобщению студентов к самостоятельной работе, учат анализировать изучаемые физические явления, использовать на практике полученные теоретические знания.

Предназначены для студентов, изучающих раздел курса общей физики «Основы молекулярной физики и термодинамики». В методических указаниях представлены примеры решения типичных задач разной степени трудности. Решения сопровождаются необходимыми примерами и комментариями. Задачи систематизированы по основным темам раздела. Приведены основные формулы, облегчающие усвоение алгоритмов решения задач.


Основы молекулярной физики и термодинамики

                     

Основные формулы

Количество вещества          ,

где                                        

            N – число молекул,                                  

            NA – постоянная Авогадро,          

            m – масса вещества,

            M – молярная масса.

Уравнение Менделеева- Клайперона

                        ,

где           

            р – давление газа,

            V – его объем,

            R – молярная газовая постоянная,

            T – термодинамическая температура.

Уравнение молекулярно – кинетической   теории газов

,

где

            n0 – концентрация молекул,

            <Eпост> – средняя кинетическая энергия поступательного движения молекул,

            m0 – масса молекулы,

            <υкв> – средняя квадратичная скорость.

Средняя кинетическая энергия молекулы

                        ,

где

i – число степеней свободы,

k – постоянная Больцмана.

Количество теплоты. Единицы измерения количества теплоты. Количество теплоты - энергия, которую тело теряет или получает при теплопередаче. Единица измерения: Джоуль, по определению. Опыт: Количество теплоты, необходимое для нагревания тела (или выделяемое им при остывании), зависит: " от рода вещества, из которого состоит тело, " от массы этого тела, " от величины изменения его температуры.
новгород лада цены на автомобили

Справочник

Энергосбережение
Информатика
Расчет электроцепи
Атомная энергетика