Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность Замена черного картриджа замена порошка в картридже hp laserjet printarsenal.ru.

Лекции по физике теория газов

Строение молекулы воды

Вода представляет собой сложное вещество, основной структурной единицей которого является молекула H2O, состоящая из двух атомов водорода и одного атома кислорода. Схем возможного взаимного расположения атомов H и O в молекуле H2O за весь период ее изучения было предложено несколько десятков; общепризнанная в настоящее время схема приведена на рис.

Рис. Схема строения молекулы воды: геометрия молекулы и электронные орбиты

Изучение молекулы воды с помощью спектрографических исследований позволило установить, что она имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его — два атома водорода. Угол при вершине составляет 104°27¢, а длина стороны — 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы без ее колебаний и вращений.

Относительная молекулярная масса H2O зависит от относительной атомной массы ее составляющих и имеет различные значения, так как кислород и водород имеют изотопы. Кислород имеет шесть изотопов: 14O, 15O, .... 19O, а водород три: 1H (протий), 2H (дейтерий), 3H (тритий). Некоторые из изотопов радиоактивны, имеют короткое время полураспада и присутствуют в воде в незначительных количествах, другие же получены только искусственным путем и в природе не встречаются.

Таким образом, принимая во внимание изотопы кислорода и водорода, можно составить из них несколько видов молекулы H2O с различными относительными молекулярными массами. Из них наиболее распространены молекулы 1H216O с относительными молекулярными массами 18 (обычная вода) и молекулы 2H216O с относительными молекулярными массами 20. Последние молекулы образуют так называемую тяжелую воду. Тяжелая вода по своим физическим свойствам значительно отличается от обыкновенной воды.

Уравнения состояния реального газа.

Наиболее простым и качественно верно отображающим поведение реального газа, является уравнение Ван-дер-Ваальса:

(P + a/2)·( – b) = R·T .

а, b – постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул.

a/2 – характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением.

Для жидких тел это давление имеет большие значения (например, для воды при 200С составляет 1050 Мпа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/2 внешнее давление легко изменяет их объем.

Уравнение Ван-дер-Ваальса качественно верно отображает поведение жидких и газообразных веществ.

На PV – диаграмме (рис.6.1) показаны изотермы построенные по уравнению Ван-дер-Ваальса. Из кривых видно, что при сравнительно низких температурах имеются волнообразные участки. Чем выше температура, тем короче эти части кривых. Эти волнообразные кривые указывают на непрерывный переход от жидкого состояния в парообразное при данной температуре. Точка А соответствует состоянии жидкости, точка В относится парообразному состоянии вещества.

В действительности переход из жидкого состояния в парообразное всегда происходит через двухфазное состояние вещества. При этом при данной температуре процесс перехода происходит также и при постоянном давлении. Этот действительный переход из жидкого состояния в парообразное изображается прямой линией АВ.

Теплоёмкость электронного газа в металлах

 В металлах теплоёмкость складывается из теплоёмкости ионной решётки (см. параграф 8.2.) и теплоёмкости свободных электронов - электронного газа., т. е. С = Cреш + Сэл . Если бы электронный газ был невырожденный (классический), то каждый электрон обладал бы средней кинетической энергией (3/2)kT и средняя энергия электронного газа в одном моле металла была бы равна (3/2)kT×NA = (3/2)RT. Полная внутренняя энергия моля металла в этом случае была бы U = 3RT + (3/2)RT = (9/2)RT,  а молярная теплоёмкость металла С = dU/dT = (9/2)R, т. е. в полтора раза больше теплоёмкости диэлектриков. Однако в действительности теплоёмкость металлов не отличается существенно от теплоёмкости неметаллических кристаллов.

Это противоречие устраняется квантовой теорией.

 Средняя энергия теплового движения, равная » kT, составляет при комнатной температуре 1/40 эВ. Такая энергия может возбудить только малую часть электронов, находящихся на самых верхних энергетических уровнях, примыкающих к уровню Ферми. Энергия Ферми EF для хорошо проводящих металлов составляет » 6 эВ [см. (7.4) и комментарий этой формулы]. Действительно, расчёт показывает, что молярная теплоёмкость электронного газа

,

что примерно в 150 раз меньше теплоёмкости твёрдого тела С = 3R при Т = 300 К.

  Относительный вклад теплоёмкости электронного газа в теплоёмкость металла будет увеличиваться с уменьшением Т, когда теплоёмкость С, пропорциональная [см. (9)], уменьшается и она будет сравнима или даже будет меньше Сэл , которая пропорциональна Т.

 Таким образом, квантовая теория объяснила и теплоёмкость металлов.

Конвекция - перенос энергии веществом. Если движение вещества возникает вследствие изменения его энергии, конвекцию называют свободной, а если оно возникает под действием внешних сил - вынужденной. Внутри твердого тела конвекции быть не может, так как частицы твердого тела "закреплены" на своих местах.
На главную