Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность

Лекции по физике теория газов

Изотермический процесс

Первый закон термодинамики для изотермического процесса выражается соотношением

Q = A.

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками, а процессы расширения или сжатия газа в таких сосудах называются адиабатическими.

Работа в изотермическом процессе . Интегрируя, получим,

.

Адиабатный процесс

В адиабатическом процессе Q = 0; поэтому первый закон термодинамики принимает вид

A = –ΔU,

т. е. газ совершает работу за счет убыли его внутренней энергии.

На плоскости (p, V) процесс адиабатического расширения (или сжатия) газа изображается кривой, которая называется адиабатой. При адиабатическом расширении газ совершает положительную работу (A > 0); поэтому его внутренняя энергия уменьшается (ΔU < 0). Это приводит к понижению температуры газа. Вследствие этого давление газа при адиабатическом расширении убывает быстрее, чем при изотермическом расширении (рис. 3.9.2).

Рисунок 3.9.2. Семейства изотерм (красные кривые) и адиабат (синие кривые) идеального газа.

В термодинамике выводится уравнение адиабатического процесса для идеального газа. В координатах (p, V) это уравнение имеет вид pVγ = const.

Энтропия в равновесной статистической физике

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы или число микросостояний, осуществляющих данное макросостояние. По определению W³1 , т.е. термодинамическая вероятность не есть верояность Р в математическом смысле (Р£1).

Например, макросостояние моля кислорода, соответствующее Р=1 физической атмосфере и Т=300К, может быть осуществлено числом микросостояний W=. Представить себе это число совершенно невозможно.

Больцман в 1872 г. показал, что энтропия системы и термодинамическая вероятность связаны между собой следующей формулой

 S=klnW, (31)

где k – постоянная Больцмана. Для выше приведенного примера S=200 Дж/К.

4.11. Второе начало термодинамики (ВНТ)

Выражая всеобщий закон сохранения и превращения энергии, первое начало термодинамики (ПНТ) не позволяет определить направление протекания процессов. Действительно, процесс самопроизвольной передачи теплоты от холодного тела к горячему не противоречит ПНТ, если только уменьшение внутренней энергии холодного тела равно энергии, полученной горячим телом. Однако, опыты показывают, что такой процесс не происходит (раскаленный кусок железа, опущенный в воду, не нагревается за счет охлаждения воды).

Обобщение огромного экспериментального материала привело к необходимости формулирования второго, третьего и нулевого начал термодинамики.

ВНТ в отличие от ПНТ не является всеобщим законом природы. Оно справедливо только по отношению к термодинамическим системам. Существует несколько эквивалентных формулировок ВНТ:

1. Невозможен процесс, единственным результатом которого является передача теплоты от холодного тела к горячему (формулировка Клаузиуса, 1850 г.).

2. Невозможен процесс, единственным результатом которого является совершение работы за счет охлаждения одного тела (формулировка Томсона, 1851 г., в 1892 г Томсон получил титул лорда Кельвина).

Соответственно этой формулировке была доказана невозможность вечного двигателя второго рода, который целиком превращал бы в работу теплоту, извлекаемую из окружающих тел (океана, атмосферного воздуха и др.) Согласно формуле (24) для него было бы Q2=0, A=Q1, h=1. Таким образом, это невозможно. Заметим, что ПНТ не противоречило бы создание такого двигателя.

3. Энтропия изолированной системы не может убывать при любых происходящих в ней процессах, т.е. dS³0, где знак равенства относится к обратимым процессам, а знак больше – к необратимым процессам.(Формулировка Клаузиуса, 1865 г.) В 1876 г. Клаузиус дал наиболее общую формулировку ВНТ: при реальных (необратимых) адиабатических процессах dS>0, т.е. энтропия возрастает, достигая максимального значения в состоянии равновесия.

Формула Больцмана (31) S=klnW позволяет дать статистическое истолкование третьей формулировки ВНТ: Термодинамическая вероятность W состояния изолированной системы при всех происходящих в ней процессах не может убывать.

Итак, ВНТ является статистическим законом.

Оно выражает необходимые закономерности хаотического движения большого числа частиц, входящих в состав изолированной системы.

Излучение. Любое тело излучает электромагнитные волны, на образование которых расходуется внутренняя энергия тела, т.е. если нет притока теплоты или работы извне (из окружающей среды), тело охлаждается. Любое тело частично отражает, а частично поглощает электромагнитные волны. Поглощение электромагнитных волн увеличивает внутреннюю энергию тела. С увеличением температуры энергия излучения растет. Электромагнитные волны могут распространяться в вакууме. Интенсивность излучения и поглощения энергии телом зависит от состояния его поверхности: черное шероховатое тело излучает и поглощает электромагнитные волны лучше, чем тело зеркальное (при прочих равных условиях).
На главную