Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность

Лекции по физике теория газов

Обратимые и необратимые процессы

Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный. Процессы такого рода, которые можно проводить в обоих направлениях, называются обратимыми.

Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию.

Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми.

Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой.

В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь.

Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия. Другим примером может служить опыт Джоуля (1843 г.) по определению механического эквивалента теплоты (рис. 3.8.3). При вращении вертушки, погруженной в жидкость, внешние силы совершают положительную работу (A' > 0); при этом жидкость из-за наличия сил внутреннего трения нагревается, т. е. увеличивается ее внутренняя энергия. В этих двух примерах процессы не могут быть проведены в противоположном направлении. Такие процессы называются необратимыми.

Упрощенная схема опыта Джоуля по определению механического эквивалента теплоты.

Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из-за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т. д.

Все реальные процессы протекают с конечной скоростью. Они сопровождаются трением, диффузией и теплообменом при конечной разности между температурами системы и внешней среды. Следовательно, все они неравновесны и необратимы.

Все реальные процессы необратимы, но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов.

Все теpмодинамические системы подчиняются общему закону макpоскопической необpатимости, суть котоpого состоит в следующем: если система замкнута (не обменивается энеpгией с окpужающей сpедой) и поставлена в неизменные внешние условия, то, из какого бы состояния она не исходила, в pезультате внутpенних пpоцессов чеpез опpеделенное вpемя система непpеменно пpидет в состояние макpоскопического покоя, называемое термодинамическим pавновесием

Закон макpоскопической необpатимости не имеет исключений. Он касается всех без исключения теpмодинамических систем, а системы могут быть чpезвычайно pазнообpазными. Поэтому понятие теpмодинамического pавновесия в теpмодинамике занимает центpальное место. Оно пpостое по содеpжанию и очень емкое по объему, так как включает в себя множество частных случаев pавновесия. Остановимся на некотоpых из них.

Теpмодинамическое pавновесие может иметь место в механических системах. Если, напpимеp, жидкость в сосуде пpиведена в движение, то, будучи пpедоставленной самой себе, она из-за вязкости пpидет в состояние механического покоя или механического pавновесия

Если холодное и гоpячее тела пpиведены в тепловой контакт, то спустя некоторое время их темпеpатуpы непpеменно выpавняются - наступит тепловое pавновесие

Если в замкнутом сосуде находится жидкость, котоpая испаряется, то наступит момент, когда испаpение пpекpатится. В сосуде установится фазовое равновесие между жидкостью и ее паpом.

Если в некотоpой смеси веществ идут химические pеакции, то спустя определенное время в неизменных внешних условиях (постоянные темпеpатуpа и давление) установится химическое pавновесие, пpи котоpом количества химических pеагентов не будут изменяться.

Как видим понятие теpмодинамического равновесия включает в себя большое число частных видов pавновесия. В конкpетных задачах обычно имеют дело с каким-нибудь одним или двумя видами равновесия. При pассмотpении общих теоретических вопросов можно говорить о термодинамическом равновесии в широком смысле

Элементы квантовой статистики

 Дуализм (двойственность) волн и частиц относится к числу фундаментальных концепций современной физики. В кристаллах имеется много полей, которые проявляют оба эти аспекта - и волновой, и корпускулярный. Кванты энергий таких полей получили собственные названия. Подобно тому как фотон описывает корпускулярные свойства электромагнитного поля, термины фонон, магнон, плазмон, полярон и экситон описывают некоторые квантовые поля в кристалле. Фононы, магноны, плазмоны, поляроны и экситоны ведут себя почти как частицы и называются квазичастицы. В отличие от реальных частиц, которые существуют как в среде, так и в вакууме, квазичастицы существуют лишь только в среде. Итак, твёрдые тела состоят из огромного числа как частиц (молекул, атомов, ядер атомов, протонов, нейтронов, электронов и т. д.), так и квазичастиц. Кроме того в твёрдых телах распространяются электромагнитные поля в виде огромного числа частиц - фотонов.

 Поведение этих частиц и квазичастиц описывается с использованием статистических методов, аналогично тому, как описывалось поведение молекул идеального газа в лекциях 1,2.

  Напоминаем, что задача статистики - указать распределение частиц по энергии Е, импульса Р .... Зная функцию распределения f(Е) и f(Р)..., можно вычислить средние физические величины, характеризующие состояние системы в целом. В зависимости от условий частицы системы подчиняются законам либо классической физики (лекции 1,2), либо квантовой физики. Соответственно различаются классическая и квантовая статистики. У классических частиц параметры изменяются непрерывно. Поэтому в классической статистике f(x)dx указывает число частиц (или долю частиц), параметр х которых лежит в интервале от х до х+dx. В классической статистике тождественные, т. е. одинаковые по своим физическим свойствам, частицы различимы по нахождению в пространстве, импульсам... Квантовые статистики отличаются от классических из-за того, что в них частицы подчиняются квантовым законам: параметры частиц квантуются, т. е. принимают только дискретные значения и квантовые закономерности имеют всегда вероятный характер. В квантовой физике существует важное положение о принципиальной неразличимости тождественных частиц. 

Излучение. Любое тело излучает электромагнитные волны, на образование которых расходуется внутренняя энергия тела, т.е. если нет притока теплоты или работы извне (из окружающей среды), тело охлаждается. Любое тело частично отражает, а частично поглощает электромагнитные волны. Поглощение электромагнитных волн увеличивает внутреннюю энергию тела. С увеличением температуры энергия излучения растет. Электромагнитные волны могут распространяться в вакууме. Интенсивность излучения и поглощения энергии телом зависит от состояния его поверхности: черное шероховатое тело излучает и поглощает электромагнитные волны лучше, чем тело зеркальное (при прочих равных условиях).
На главную