Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность

Лекции по физике теория газов

Газовая постоянная универсальная

Газовая постоянная универсальная (молярная) (R) фундаментальная физическая константа, входящая в уравнение состояния 1 моля идеального газа: $pv=RT$.

Газовая постоянная численно равна работе расширения 1 моля идеального газа под постоянным давлением при нагревании нa 1 K. С другой стороны, Газовая постоянная - разность молярных теплоёмкостей при постоянном давлении и постоянном объёме: $с_p - c_v = R$(для газов, близких по своим свойствам к идеальному). Численное значение газовой постоянной в единицах СИ (на 1984 год): R = 8,31441(26) Дж/(моль$\cdot$К). В др. единицах: $R = 8,314\cdot 10^7$эрг/(моль$\cdot$К) = 1,9872кал/(моль$\cdot$К) = 82,057см<sup>3</sup>$\cdot$атм/(моль$\cdot$К). Физическую постоянную $B = R/\mu$(где $\mu$- молекулярная масса гaзa) называют удельной газовой постоянной.

Лекция 7

Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно-кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества, хотя в целом ряде случаев термодинамика использует молекулярно-кинетические модели для иллюстрации своих выводов.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Понятие о термодинамической системе

Термодинамической системой называется совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой. Все тела находящиеся за пределами границ рассматриваемой системы называются окружающей средой.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом.

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом. В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема (закон Джоуля).

Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:

Таким образом, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела. Она не зависит от того, каким путем было реализовано данное состояние. Принято говорить, что внутренняя энергия является функцией состояния.

¨Работа (Дж), совершаемая системой (газом) при изменении объема .

Фазы и фазовые переходы

Фазой называется совокупность частей системы одинаковых по всем физическим, химическим свойствам и структурному составу. Например, существует твердая, жидкая и газообразная фазы (называемые агрегатными состояниями).

Фазовый переход (фазовое превращение), в широком смысле – переход вещества из одной фазы в другую при изменении внешних условий (Т, Р, магнитных и электрических полей и т.д.); в узком смысле – скачкообразное изменение физических свойств при непрерывном изменении внешних параметров. Будем далее рассматривать фазовые переходы в узком смысле.

Различают фазовые переходы I рода и II рода. Фазовый переход I рода – широко распространенное в природе явление. К ним относятся: испарение и конденсация, плавление и затвердевание, сублимация или возгонка (переход вещества из кристаллического состояния непосредственно, без плавления, в газообразное, например, сухой лед) и конденсация в твердую фазу и др. Фазовые переходы I рода сопровождаются выделением или поглощением теплоты (теплоты фазового перехода q), при этом скачком изменяются плотность, концентрация компонентов, молярный объем и т.д.

Фазовый переход II рода не сопровождается выделением или поглощением теплоты, плотность изменяется непрерывно, а скачком изменяется, например, молярная теплоемкость, удельная электрическая проводимость, вязкость и др. Примерами фазовых переходов II рода могут служить переход магнитного вещества из ферромагнитного состояния (m>>1) в парамагнитное (m»1) при нагреве до определенной температуры, называемой точкой Кюри; переход некоторых металлов и сплавов при низких температурах из нормального состояния в сверхпроводящее и др.

Излучение. Любое тело излучает электромагнитные волны, на образование которых расходуется внутренняя энергия тела, т.е. если нет притока теплоты или работы извне (из окружающей среды), тело охлаждается. Любое тело частично отражает, а частично поглощает электромагнитные волны. Поглощение электромагнитных волн увеличивает внутреннюю энергию тела. С увеличением температуры энергия излучения растет. Электромагнитные волны могут распространяться в вакууме. Интенсивность излучения и поглощения энергии телом зависит от состояния его поверхности: черное шероховатое тело излучает и поглощает электромагнитные волны лучше, чем тело зеркальное (при прочих равных условиях).
На главную