Сборник задач по физике Курс лекций по физике Оптика Кинематика Теплопроводность

Лекции по физике теория газов

Молекулярно-кинетическая теория газов

Основные представления молекулярно-кинетической теории вещества.

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества.

В основе молекулярно-кинетической теории лежат три основных положения:

Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Траектория броуновской частицы.

Рис1. Траектория броуновской частицы.

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение. Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном (1827 г.). Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую (рис. 3.1.1). Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гг.).

Приведем некоторые из доказательств беспорядочного (хаотического) движения молекул:

а) стремление газа занять весь предоставленный ему объем (распространение пахучего газа по всему помещению);

б) броуновское движение - беспорядочное движение мельчайших видимых в микроскоп частиц вещества, находящихся во взвешенном состоянии и нерастворимых в ней. Это движение происходит под действием беспорядочных ударов молекул, окружающей жидкости, находящихся в постоянном хаотическом движении;

в) диффузия - взаимное проникновение молекул соприкасающихся веществ. При диффузии молекулы одного тела, находясь в непрерывном движении, проникают в промежутки между молекулами другого соприкасающегося с ним тела и распространяются между ними. Диффузия проявляется во всех телах - в газах, жидкостях и твердых телах, - но в разной степени.

Барометрическая формула. Распределение Больцмана

При выводе уравнения (14) предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы газа находятся в поле тяготения Земли, поэтому их концентрация с высотой уменьшается. Покажем это.

Рассмотрим газ в сосуде (см. рис. 3). Если атмосферное давление на высоте h равно Р, то на высоте h+dh оно равно Р+dP (при dh>0 dP<0, т.к. давление с высотой убывает). Разность давлений Р и Р+dP равна весу газа, заключенного в объеме цилиндра высотой dh с основанием 1 м2: Р -(Р+dP)=rgdh, где r - плотность газа. Следовательно, 

dP= -rgdh.  (19)

Воспользовавшись уравнением Клапейрона-Менделеева РV=RT , находим, что . Подставив это выражение в (19), получим

  или . (20)

Интегрируя (20) от h=0 до h находим, .Проведя потенцирование получим барометрическую формулу. , (21)

где m0=M/NA, k=R/NA.

 Эта формула была впервые установлена в 1821 г. Лапласом.

 Анализ барометрической формулы (21) показывает, что чем больше молярная масса М газа, тем быстрее его давление убывает с высотой. Поэтому атмосфера по мере увеличения высоты все более обогащается легкими газами.

 Следует иметь в виду, что применимость формулы (21) к реальной атмосфере несколько ограничена, поскольку атмосфера в действительности не находится в тепловом равновесии, и ее температура меняется с высотой. Тем не менее, ее используют, определяя высоту по изменению давления.

 Формулу (21) можно преобразовать, если воспользоваться выражением (9) Р=nkT 

 , (22)

где m0gh=Wп - потенциальная энергия молекулы в поле тяготения, т.е.

 . (23)

 Больцман доказал, что формула (21) справедлива в случае потенциального поля любой природы (т.е. не только поля тяготения). В связи с этим функцию (23) называют распределением Больцмана. 

Закон Максвелла о распределении молекул идеального газа по скоростям

 В газе, находящемся в состоянии равновесия, установится некоторое стационарное (не меняющееся со временем) распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Такой закон был теоретически выведен Максвеллом в 1859 г. и был опубликован в 1860 г.

 При выводе этого закона Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что внешние поля на газ не действуют.

 Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Различают три формы записи распределения Максвелла. Мы изучим одну из них.

Способы изменения внутренней энергии тела. Внутреннюю энергию тела можно увеличить, совершая над ним работу. Тело, совершая работу, может уменьшить свою внутреннюю энергию. Процесс изменения внутренней энергии тела без совершения работы (телом или над ним) называется теплопередачей. Есть только два способа изменения внутренней энергии тела: совершение работы и теплопередача (теплообменом). Зная внутреннюю энергию тела нельзя сказать, каким способом оно эту энергию приобрело.
На главную