Электрический ток в металлах Астрономия квантовая механика электромагнитная индукция Магнитные моменты атомов Особенности структуры электронных уровней в сложных атомах

Учебник физики Примеры решения задач и лабораторных работ

Гармонические колебания (механические и электромагнитные) и их характеристики. Дифференциальное уравнение гармонических колебаний. Математический, физический маятники. Электрический колебательный контур. Энергия гармонических колебаний. Сложение гармонических колебаний одного направления и одинаковой часто ты. Биения. Сложение взаимно перпендикулярных колебаний. Диф ференциальное уравнение затухающих колебаний (механических и электромагнитных) и его решение. Апериодический процесс. Диффе ренциальное уравнение вынужденных колебаний, (механических и электромагнитных) и его решение. Амплитуда и фаза вынужденных колебаний. Случай резонанса.

МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ.

Магнитные моменты атомов.

Для полного описания атома необходимы знания квантовой механики, которую мы будем изучать позднее. Однако магнитные свойства вещества хорошо объясняются с помощью простой и наглядной планетарной модели атома, предложенной Э.Резерфордом. По Резерфорду атом состоит из положительно заряженного ядра, вокруг которого по своим орбитам движутся отрицательно заряженные электроны. В целом система электрически нейтральна, так как заряд ядра равен суммарному заряду всех электронов в атоме. Согласно представлениям классической физики, электроны в атоме движутся по замкнутым круговым орбитам с постоянной скоростью, образуя систему замкнутых орбитальных токов. Данные токи называются токами Ампера, поскольку Ампер впервые сделал предположение об их существовании. Каких магнитных эффектов можно ожидать в такой системе?

Орбитальному току так же, как и в случае витка и рамки с током, соответствует магнитный момент , называемый орбитальным магнитным моментом электрона. Он направлен из центра орбиты электрона перпендикулярно ее плоскости (как и магнитный момент витка с током), а его модуль рm= IS = Iπr2, где r - радиус орбиты электрона; S – площадь орбиты. Если электрон движется по круговой орбите со скоростью υ (рис. 2.1), то сила орбитального тока I=q/t=e/Teν, где T – время одного оборота электрона по орбите, т.е. период; ν – частота вращения электрона по орбите, т.е. число оборотов электрона вокруг ядра за 1 с. Отсюда получаем , откуда  и

 Равномерно вращаясь по своей орбите, электрон обладает механическим моментом импульса Le, определяемым относительно центра его орбиты (рис. 2.1). Такой момент импульса называется орбитальным. По определению . Численное значение орбитального момента импульса: Le= mυr sin(υ,r) = mυr, так как угол между векторами равен 90°. Вектор Le противоположен по направлению рm, поскольку скорость электрона и ток имеют противоположное направление, однако эти векторы лежат на одной прямой. Поэтому можно записать


Минус в формуле появляется из-за того, что векторы  противоположны. Величина γ называется гиромагнитным или магнитомеханическим отношением орбитальных моментов электрона. Это отношение одинаково для любых по форме и размеру орбит и любых скоростей движения электрона. Однако опыты Эйнштейна и де Гааза, проведенные с железными стержнями, привели к неожиданным результатам. Определенное ими экспериментально гиромагнитное отношение оказалось в два раза больше теоретического! Этот результат имел огромное значение для всего дальнейшего развития физики. Для его объяснения было предположено (а затем и доказано), что электрон кроме  обладает собственным моментом импульса, который не имеет ничего общего с его движением по орбите. Этот собственный момент импульса был назван спином электрона (от англ. spin - вращаться). Спин электрона является его квантовым свойством, он неизменен, и с ним связаны многие важные закономерности, например распределение электронов в атоме по оболочкам. Спину соответствует собственный магнитный момент электрона, также имеющий неизменную величину. Векторы магнитного и спинового моментов антипараллельны, как показано на рис.2.2., а отношение их оказывается в два раза больше, чем в случае движения электрона по орбите, т.е. γs= -e/m.

 Что касается магнитного момента самого ядра, то в большинстве случаев им можно пренебречь, потому что, благодаря своей значительной массе, ядро движется гораздо медленнее электрона, и его магнитный момент в тысячи раз меньше, чем у электрона. Для атома, содержащего больше одного электрона, орбитальным магнитным моментом называется вектор, равный геометрической сумме орбитальных магнитных моментов всех электронов в атоме: . Полный магнитный момент атома складывается из геометрической суммы орбитальных и спиновых моментов всех электронов в атоме:

 

Атом в магнитном поле.

 Рассмотрим влияние внешнего магнитного поля на движение электронов в атомах вещества. При внесении атома любого вещества в магнитное поле каждый электрон продолжает двигаться по своей орбите, образуя орбитальный ток. Однако теперь на этот ток, как на рамку с током, действует вращательный момент. Это приводит к тому, что электронная орбита приобретает дополнительное вращение. Частота данного вращения зависит только от величины приложенного поля и отношения заряда электрона к его массе:  Отсюда следует, что под влиянием внешнего магнитного поля связанные с электронной орбитой векторы  вращаются с той же самой угловой частотой ωL. При этом они описывают круговые конические поверхности с общей вершиной в центре орбиты электрона О вокруг оси, параллельной направлению индукции магнитного поля В (рис.2.3). Частота ωL называется Ларморовой частотой, а возникающее под действием поля дополнительное движение орбиты электрона называется Ларморовой прецессией.

 Все вышеизложенное составляет суть теоремы Лармора: единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и магнитного момента электрона с угловой скоростью ωL вокруг оси, проходящей через ядро атома и параллельной вектору В. Сэр Джозеф Лармор, английский физик и математик, доказал эту теорему в 1895 г., еще до того, как стало известно строение атома. Ларморова частота ωL одинакова для всех электронов, входящих в атом.

 Дополнительное движение электронной орбиты обуславливает дополнительное движение электрона, которому соответствует дополнительный круговой ток, направленный в другую сторону по сравнению с орбитальным током(рис. 2.4):


Этот ток создает свой магнитный момент . Дополнительный магнитный момент направлен в сторону, противоположную магнитному полю. Он называется индуцированным, или наведенным магнитным моментом. Среднее значение дополнительного магнитного момента:


Знак «минус» указывает на то, что векторы  и  противоположны. Так как электронные микротоки существуют в каждом веществе, то Ларморова прецессия возникает у всех без исключения веществ.

Намагниченность вещества. Ранее мы предполагали, что провода, несущие ток и создающие магнитное поле, находятся в вакууме. Если же провода находятся в какой-либо среде, то величина создаваемого ими магнитного поля изменится.

Виды магнетиков. Проведем опыт с сильным магнитным полем, создаваемым, например, соленоидом. Соленоид (цилиндр с намотанным на него проводом, по которой течет ток) может создать внутри себя магнитное поле в 100000 раз больше магнитного поля Земли. Будем помещать в такое магнитное поле различные вещества и наблюдать, как действует на них сила магнитного поля. Качественные результаты подобных опытов получаются довольно разнообразными.

Доменная структура ферромагнетиков. Классическая теория ферромагнетизма была развита французским физиком П.Вейсом (1907 г.). Согласно этой теории, весь объем ферромагнитного образца, находящегося при температуре ниже точки Кюри, разбит на небольшие области – домены,– которые самопроизвольно намагничены до насыщения.

Основной закон электромагнитной индукции. Величайший физик XIX века Майкл Фарадей считал, что между электрическими и магнитными явлениями существует тесная взаимосвязь. Ампер, Био и другие ученые выяснили одну сторону этой взаимосвязи, с которой мы уже знакомы, а именно – магнитное действие тока.

7. Температура нагревателя тепловой машины 500 К. Температура холодильника 400 К. Определить КПД тепловой машины, работающей по циклу Карно, и полную мощность машины, если нагреватель ежесекундно передает ей 1675 Дж теплоты.

 Дано: Т=500 К, Т0=400 К, Q=1675 Дж.

Найти: η, N.

Решение: КПД машины определяется по формуле:

η = (T-T0)/T (1) или η=A/Q (2)

Из выражений (2) и (1) находим

A= η Q=(T-T0)/T .

Произведем вычисления:

Η = (500К-400К)/500К = 0,2 ;

A=0,2.1675 Дж = 335 Дж .

Эта работа совершается за 1 с, следовательно, полная мощь машины 335 Вт.

Ответ: η=0.2, N=335Вт.

8. Горячая вода некоторой массы отдает теплоту холодной воде такой же массы и температуры их становятся одинаковыми. Показать, что энтропия при этом увеличивается.

Решение: пусть температура горячей воды T1, холодной Т2, а температура смеси θ. Определим температуру смеси, исходя из уравнения теплового баланса

mc (T2- θ)= mc (θ- T2), или Т1- θ= θ-Т2,

откуда θ=(Т1+Т2)/2 . (1)

Изменение энтропии, происходящее при охлаждении горячей воды,

Изменение энтропии, происходящее при нагревании холодной воды,

Изменение энтропии системы равно

или с учетом соотношения (1) имеем

так как (Т1+Т2)2>4T1T2, то ∆S>0.

9. Вычислить эффективный диаметр молекул азота, если его крити ческая температура 126 К, критическое давление 3,4 МПа.

Дано: Ткр = 126 К, ркр = 3,4 .106 Па.

Найти d.

Решение. Азот, согласно условию задачи, должен подчиняться урав нению Ван-дер-Ваальса:

Постоянную b в уравнении Ван-дер-Ваальса с достаточной степенью точности считают равной учетверенному собственному объему 1 мо ля газа. В 1 моле газа находится 6,02*1023 молекул (NA = 6,02*1023 моль-1), следовательно, объем одной молекулы равен

V=

Откуда

d=

Постоянная b = Tкp R /(8pкр), тогда

d=

Ответ: d=3,1.10-10 м.

 

Магнитные моменты атомов. Намагниченность. Типы магнети ков Элементарная теория диа- и парамагнетизма. Магнитная воспри имчивость вещества. Напряженность магнитного поля. Магнитная проницаемость среды. Ферромагнетики. Кривая Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Уравнение бегущей волны. Волно вое уравнение. Фазовая скорость и дисперсия волн. Энергия волны. Принцип суперпозиции волн. Групповая скорость. Когерентность. Интерференция воли. Образование стоячих волн. Уравнение стоячей волны и его анализ.
Теория Максвелла для электромагнитного поля