Электрический ток в металлах Астрономия квантовая механика электромагнитная индукция Магнитные моменты атомов Особенности структуры электронных уровней в сложных атомах

Учебник физики Примеры решения задач и лабораторных работ

Магнитное поле. Магнитная индукция. Закон Ампера. Магнит ный поток Контур с током в магнитном поле. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля. Вихревой ха рактер магнитного поля. Закон полного тока. Работа по перемеще нию проводника и контура с током в магнитном поле. Действие магнитного поля на движущийся заряд. Сила Лоренца. Принцип действия циклических ускорителей заряженных частиц. Эффект Холла Явление электромагнитной индукции. Закон электромагнитной индукций. Закон  Ленца. Явление самоиндукции. Индуктивность. Энергия системы проводников с током. Объемная плотность энергии магнитного поля.

Проблемы развития атомной энергетики.

При использовании энергии ядер в мирных целях возникают определенные проблемы. Первая заключается в необходимости защиты людей, обслуживающих ядерные энергетические установки, от вредного действия гамма – излучения и потоков нейтронов, возникающих при осуществлении ядерной реакции в активной зоне реактора. Для обеспечения полной безопасности людей, работающих на атомной электростанции или на судах с ядерной энергетической установкой, ядерный реактор окружают толстым слоем материалов, хорошо поглощающих гамма-излучение и нейтроны. Вторая проблема связана с тем, что при работе реактора  в его активной зоне накапливается большое количество радиоактивных шлаков, которые могут исказить нормальный режим работы и привести к выбросу шлаков из реактора. Например, после аварии на Три–Майл-Айленд (США) и на Чернобыльской АЭС произошло сильное радиоактивное заражение обширных территорий, с них пришлось эвакуировать сотни тысяч жителей и эти территории на несколько десятков лет выпали из хозяйственного оборота. Последствия этих катастроф будут сказываться еще в течение десятков и даже сотен лет, так как некоторые ядра шлаков (радионуклиды - стронций, плутоний и др.) имеют большие периоды полураспада. Третья проблема заключается в необходимости надежного захоронения радиоактивного шлака в специальных хранилищах, где они могут находится десятки и сотни лет, пока они не перестанут быть радиоактивными. Проникновение их в окружающую среду может оказать необратимое отрицательное воздействие на природу и людей.

Несмотря на ряд опасностей, связанных с работой реакторов, ядерная энергетика бурно развивается во всем мире главным образом из-за того, что возможности дальнейшего развития гидроэнергетики близки к полному исчерпанию, а также быстро убывают запасы углеводородного горючего. Масштаб добычи и расходования ископаемых энергоресурсов, металлов, потребления воды, воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов, увы, ограничены. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов. Легко оценить, что органические ископаемые ресурсы, даже если учесть вероятное замедление темпов роста энергопотребления, будут в значительной мере израсходованы в будущем веке. Открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеянном состоянии - в гранитах, базальтах, воде; в водах мирового океана количество урана достигает 4×109 тонн. Богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного, поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана.

Что касается экологической безопасности, необходимо отметить, что при сжигании угля и нефти, ежегодно образуется до 400 млн.т. сернистого газа и окислов азота, т.е. около 70 кг вредных веществ на каждого жителя земли в год. Использование атомной энергетики снимает остроту этой проблемы, так как 1 кг природного урана заменяет 20 т угля и при этом степень ее влияния на окружающую среду очень мала. Атомные электростанции не загрязняют атмосферу дымом и пылью, не требуют создания крупных водохранилищ, занимающих большие площади плодородных земель. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Если атомная энергетика заменит обычную энергетику, то возможности возникновения "парника" с тяжелыми экологическими последствиями глобального потепления будут устранены.

Чрезвычайно важным обстоятельством является также тот факт, что атомная энергетика не создаст особых транспортных проблем, поскольку требует ничтожных транспортных расходов, что освобождает от бремени постоянных перевозок огромных количеств органического топлива.

Очевидно, что без ядерной энергетики человечеству не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов, усиления средств защиты, в частности от ошибочных действий персонала, наряду с этим прорабатывается идея создания реакторов с внутренне присущей им безопасностью.

 

Управляемая реакция термоядерного синтеза.

Возможное решение множества проблем, связанных с производством безопасной и неограниченной по количеству ядерной энергии, заключается в использовании ядерной реакции синтеза. Из графика рис. 17 для удельной энергии связи ядер видно, что энергия может освобождается не только в реакциях деления тяжелых ядер, но и при соединении легких атомных ядер. Для соединения одноименно заряженных протонов необходимо преодолеть кулоновские силы отталкивания. Это возможно при достаточно больших скоростях столкновения частиц, т.е. при температуре порядка 107 – 108 К. Необходимые условия для синтеза ядер гелия из протонов имеются в недрах Солнца и звезд. На земле термоядерная реакция синтеза осуществляется при термоядерных взрывах. Синтез гелия из легкого изотопа водорода происходит при температуре около 108 К, а для синтеза гелия из тяжелых изотопов водорода, дейтерия и трития требуется нагревание плазмы примерно до 5∙107 К. Возможные реакции:

  .

При синтезе 1 г гелия из дейтерия и трития выделяется энергия 4,2 1011 Дж. Такая энергия выделяется при сжигании 10 т дизельного топлива. Запасы водорода на Земле практически неисчерпаемы, кроме того, на Луне обнаружены большие запасы изотопа гелия, который тоже может быть использован в подобных реакциях, поэтому использование энергии термоядерного синтеза в мирных целях является одной из важнейших задач современной науки и техники. Управляемую термоядерную реакцию синтеза гелия из тяжелых изотопов водорода предполагается осуществить, нагревая исходное вещество в состоянии плазмы путем пропускания через нее электрического тока. Для удержания нагретой плазмы от соприкосновения со стенками камеры А.Д.Сахаров и И.Е.Тамм предложили использовать магнитные поля особой конфигурации. На экспериментальной установке «Токамак» российским физикам удалось нагреть плазму до температуры 1,3·107 К.

Второй возможный путь – нагревание водорода с помощью лазерного излучения. Для этого пучки от нескольких мощных лазеров должны быть сфокусированы на стеклянном шарике, внутри которого заключена смесь тяжелых изотопов дейтерия и трития. В экспериментах на лазерных установках уже получена плазма с температурой в несколько десятков миллионов градусов Кельвина.

Свойства и характеристики радиоактивных излучений. Частицы, возникающие при радиоактивном распаде, попадая в вещество, сталкиваются с электронами атомов.

Свойства элементарных частиц. Гравитационное, электромагнитное, слабое и сильное взаимодействия.

Гипотеза Великого объединения всех видов взаимодействия. В 70-е ХХ века в естествознании было установлено, что электромагнитное и слабое взаимодействия, казалось бы весьма разные по своей природе, в действительности являются двумя разновидностями единого так называемого электрослабого взаимодействия. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц.

Закон Ампера. Характеристика магнитного поля, единицы их измерения. Движущиеся заряды /токи/ изменяют свойства окружающего их пространства - создают в них магнитное  поле

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Движение тела массой 1 кг задано уравнением s=6t3+3t+2. Найти зависимость скорости и ускорения от времени. Вычислить силу, действующую на тело в конце второй секунды.

Решение. Мгновенную скорость находим как производную от пути по времени:

v = ds/dt; v = 18t3+3.

Мгновенное ускорение определяется первой производной от скорости по времени или второй производной от пути по времени:

a = dv/dt=d2 s/dt2 ; a = 36t.

Сила, действующая на тело, определяется по второму закону Нью тона: F=mа, где a согласно условию задачи — ускорение в конце второй секунды. Тогда

F = m.36t; F= 1 кг.36.2 м/с2 = 72 Н.

Ответ: v = 18t2+3; а = 36t; F = 72 Н.

2. Стержень длиной 1 м движется мимо наблюдателя со скоростью 0,8 с. Какой покажется наблюдателю его длина?

Дано: l0=1 м, v = 0,8 с.

Найти l.

Решение. Зависимость длины тела от скорости в релятивистской

механике выражается формулой , где l0— длина

покоящегося стержня; v — скорость  его движения; с— скорость

света в вакууме. Подставляя в формулу (1) числовые значения,

имеем

Ответ: l = 0,6 м.

Магнитный гистерезис. Точка Кюри. Основы теории Максвелла для электромагнитного поля. Ток смещения. Уравнения Максвелла для электромагнитного поля в инте гральной и дифференциальной формах. Относительный характер электрической и магнитной составляющих электромагнитного поля.

 


Теория Максвелла для электромагнитного поля