Электрический ток в металлах Астрономия квантовая механика электромагнитная индукция Магнитные моменты атомов Особенности структуры электронных уровней в сложных атомах

Учебник физики Примеры решения задач и лабораторных работ

Закон сохранения электрического заряда. Электрическое поле. Основные характеристики электростатического поля — напряженность и потенциал поля. Напряженность как градиент потенциала. Поток вектора напряженности. Теорема Остроградского — Гаусса и ее при менение к расчету поля. Электрическое поле в веществе. Свободные и связанные заряды в диэлектриках. Электронная и ориентационная поляризации. Поляризованность. Теорема Остроградского — Гаусса для электрического поля в диэлектрике. Электрическое смещение. Диэлектрическая проницаемость среды. Сегнетоэлектрики.

Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.

Для расчета волновой функции необходимо иметь уравнение, которое позволяло бы для любого момента времени определить эту функцию с учетом действующих на частицу внешних силовых полей. Чтобы искомое уравнение учитывало волновые свойства микрочастиц, необходимо чтобы оно по форме было волновым уравнением, подобно тем, которые описывают звуковые или электромагнитные волны. Известно, что для плоской волны, распространяющейся вдоль оси х, волновое уравнение – это дифференциальное уравнение в частных производных, где независимыми переменными являются координаты и время. Учитывая такие аналогии, австрийский физик Эрвин Шредингер получил в 1926 г. основное уравнение квантовой механики для ψ (х, у, z, t)

 , (1.10)

где m – масса частицы, i – мнимая единица, U – потенциальная энергия частицы, Δ‑оператор Лапласа, который представляет собой сумму вторых частных производных по координатам, т.е.

 (1.11)

Из уравнения Шредингера следует, что конкретный вид волновой функции зависит от потенциальной энергии U, т.е. определяется характером сил, действующих на частицу. Уравнение Шредингера оказалось комплексным (включающим в себя мнимую единицу), поэтому и волновая функция также комплексная, при этом реальный физический смысл имеет квадрат модуля волновой функции (2.5, 2.6), который всегда действителен.

Уравнение Шредингера, будучи дифференциальным уравнением, может иметь множество решений. Из этих решений смысл имеют только те, в которых волновая функция будет однозначной, непрерывной и конечной, что соответствует физической реальности. Эти требования должны относиться и к частным производным от функции по времени и координатам, так как они тоже входят в уравнения Шредингера. Кроме этих требований на волновую функцию накладывается условие нормировки

, (1.12)

которое следует из того факта, что частица реально существует и обязательно находится где-либо в окружающем пространстве. Поэтому суммарная вероятность нахождения частицы во всем бесконечном пространстве равна единице, т.е. это достоверное событие. Смысл и назначение уравнения Шредингера заключается в том, что если известна волновая функция некоторой частицы в начальный момент времени и известно силовое поле, в котором она движется, то, решив это уравнение, можно найти волновую функцию и узнать характеристики состояния частицы в последующие моменты времени.

Если силовое поле, в котором движется частица, постоянно во времени, то U не зависит от времени и волновую функцию можно представить в виде , где Е – полная энергия частицы. Если мы подставим такую функцию в уравнение Шредингера, проведем дифференцирование и сокращение, то получим уравнение

 (1.13)

Это - уравнение Шредингера для, так называемых, стационарных состояний, находясь в которых частица имеет определенные, не меняющиеся со временем характеристики.

 

 

Частица в одномерной бесконечно глубокой потенциальной яме. Квантование энергии частицы. Объяснение туннельного эффекта. Гармонический осциллятор.

Для выяснения особенностей решения уравнения Шредингера, рассмотрим поведение микрочастицы в одномерной бесконечно глубокой потенциальной «яме». Такой вид потенциала взаимодействия в природе не наблюдается, но он наиболее простой и может демонстрировать основные особенности решения (наиболее близок он к потенциалу, используемому при рассмотрении поведения электрона в металле). Такая потенциальная «яма» описывается следующими соотношениями для потенциальной энергии (рис.4):

U = ¥ в областях 1, 3 для x < 0 и x > a; U = 0 в области 2 для 0> x >a.

 

Рис.4. График потенциала одномерной бесконечно глубокой «ямы».

Запишем стационарное уравнение Шредингера для областей 1, 3 , где U=¥

, (1.14)

его единственно возможное решение j=0. Это означает, что вероятность нахождения частицы в этих областях равна нулю и частица туда проникнуть не может.

 Для области 2 стационарное уравнение Шредингера имеет вид

, (1.15)

из теории дифференциальных уравнений следует, что его решение имеет вид

 . (1.16)

Вследствие требования непрерывности функции j, она должна быть равна нулю в точках x=0 и x=a, что следует из решения для областей 1, 3. Отсюда получается, что должны выполняться соотношения Asin(0)+Bcos(0)=0, Asin(ka)+Bcos(ka)=0 и, согласно математике, это будет при B=0 и ka=pn, где n-целое число. Необходимое также условие нормировки (1.12) в данной задаче имеет вид

, (1.17)

взяв этот интеграл, получаем  и в результате имеем конечное выражение для возможных решений уравнения Шредингера в поставленной задаче

 . (1.18)

Данное решение показывает, что поведение микрочастицы в одномерной бесконечно глубокой потенциальной «яме» может быть различным в зависимости от значения числа n, его называют квантовым числом и рассматривают как номер возможного состояния микрочастицы.

Рассмотрим графики функции j2 (рис.5), которая согласно (1.8) определяет вероятность нахождения частицы в разных точках «ямы» для различных состояний.

Рис.5. Графики вероятности нахождения частицы в бесконечно глубокой потенциальной «яме» для n = 1, 2, 3. Горизонтальные, тонкие линии соответствуют значениям энергий состояний (энергетическая диаграмма или уровни возможных энергий системы), толстые линии соответствуют функции j2.

Из рисунка 5 видно, что во втором и в третьем состояниях микрочастица не может находиться в некоторых точках «ямы» A,B,C, однако она может находиться между этими точками. Кроме этого, видно, что минимальное значение полной энергии Е1, которая в области 2 является кинетической энергией, не равна нулю, это означает что частица находится в непрерывном движении. Такое поведение микрочастицы существенно отличается от поведения макрочастиц и приводит к тому, что в квантовой механике не может быть использовано классическое понятие траектории.

Используя найденные соотношения ka = pn и (1.16), получим выражение для полной энергии частицы

 (1.19)

которое показывает, что энергия частицы в разных состояниях различна и строго определена (имеет дискретный спектр). Других значений энергии частица иметь не может, возможные дискретные значения называют  квантовыми уровнями энергии. Подобное квантование у микрочастиц может происходить и с другими параметрами: импульсом, моментом импульса.

Если рассмотреть таким же образом более реальную ситуацию, когда частица находится в одномерной потенциальной «яме» конечной глубины (U = Uo в областях 1,3 для x < 0 и x > a; U = 0 в области 2 для 0 > x > a), то, в отличие от случая бесконечно глубокой ямы, функция j2 не будет равна нулю в областях 1, 3 даже при малых энергиях частицы (рис.6).

 

Рис.6. Графики вероятности нахождения частицы в потенциальной «яме» конечной глубины для n = 1, 2, 3.

Это означает, что частица может выйти за пределы потенциальной «ямы» даже в случае, когда ее энергия меньше Uo , чего в классической механике происходить не может. Подобное явление наблюдается и при рассмотрении поведения микрочастицы вблизи одномерного потенциального «барьера» (U = 0 в областях 1,3 для x < 0 и x > a; U = Uo в области 2 для 0 > x > a). Если решить уравнение Шредингера в этом случае, то можно обнаружить, что частица с энергией меньшей Uo может проходить сквозь этот «барьер».

Такие явления прохождения сквозь потенциальные барьеры частиц с малой энергией являются чисто квантовыми и называются «туннельными эффектами». Экспериментально эти явления наблюдаются с микрочастицами в различных ситуациях: автоэлектронная эмиссия – выход электронов за пределы металлов при малых температурах, автоионизация – выход электронов из атомов и молекул под действием слабого электрического поля, когда энергии поля бывает недостаточно для вырывания электрона с точки зрения классической механики. В физике элементарных частиц подобное явление наблюдается в радиоактивном излучении при выходе альфа частиц из ядер атомов.

Очень важным для атомной физики является рассмотрение поведения микрочастицы в силовом поле, когда потенциальная энергия зависит от координаты x в соответствии с законом , этот случай соответствует в классической механике гармоническим колебаниям тела массой m с циклической частотой wo  (гармонический осциллятор). Примерно такие колебания в мире микрочастиц происходят при движении атомов в молекуле, а также при колебаниях молекул около узлов кристаллической решетке в твердых телах.

В классической механике гармонический осциллятор может иметь любую произвольную полную энергию Е, а его максимальное смещение от положения равновесия (амплитуда колебаний) xo ограничено и связано с энергией соотношением . В квантовой механике для анализа характеристик особенностей движения гармонического осциллятора необходимо решить уравнение Шредингера с данной потенциальной энергией

. (1.20)

Решение такого дифференциального уравнения в аналитическом виде достаточно сложно, но качественные особенности аналогичны предыдущим случаям. На рисунке 7 представлены графики получаемого решения и возможные значения энергий.

 

 Рис.7. Графики вероятности нахождения гармонического осциллятора для n = 0, 1, 2. Горизонтальные, тонкие линии показывают значения энергий состояний (энергетическая диаграмма или уровни возможных энергий системы), толстые линии показывают j2, пунктирная – вид потенциала.

Возможные значения для полной энергии при решении определяются формулой

 . (1.21)

Из этой формулы видно, что полная энергия гармонического осциллятора тоже квантована, а ее минимальная величина при n = 0 отлична от нуля, также как и в предыдущих случаях. Наличие энергии нулевых колебаний – это чисто квантовый эффект, он говорит о том, даже в области нулевой потенциальной энергии у частицы имеется ненулевая кинетическая энергия и ненулевой импульс. Это означает, что микрочастица постоянно двигается и не может находиться в абсолютном покое.

Подтверждение наличия нулевых колебаний было получено в экспериментах по рассеиванию света в кристаллах. Согласно классической теории, при абсолютном нуле температуры по Кельвину колебаний атомов около узлов кристаллической решетки и соответственно рассеивания света, вызываемого этими колебаниями, не должно быть. Эксперименты показывают, что интенсивность рассеянного света при уменьшении температуры  уменьшается, но даже при температурах очень близких к абсолютному нулю интенсивность рассеянного света не нулевая, что доказывает наличие нулевых колебаний.

Все выше приведенные варианты решений уравнения Шредингера и наличие в экспериментах эффектов, объясняемых рассмотренными примерами, указывают на необходимость использования квантово-механического описания поведения микрочастиц.

10.(И.3.328). В схеме рис. 5.17 известны ЭДС источника, сопротивление R и индуктивности катушек L1 и L2. Внутреннее сопротивление источника и сопротивления катушек пренебрежимо малы. Найти установившиеся токи в катушках после замыкания ключа К.

Указание к решению. Так как катушки L1 и L2 соединены параллельно, то возникающие в них ЭДС индукции при замыкании ключа должны быть одинаковыми, следовательно, изменения потокосцеплений от момента включения до установления равновесия одинаковы, так как

.

Таким образом, в установившемся режиме L1I1=L2I2. Используя далее закон Ома, легко найти токи.

Ответ:  

ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Механическое движение как простейшая форма движения мате рии. Представление о свойствах пространства и времени. Преобра зования Галилея. Механический принцип - относительности. Класси ческий закон сложения скоростей. Постулаты специальной теории от носительности. Преобразования Лоренца. Понятие одновременности. Релятивистское изменение длин и промежутков времени. Релятивистский закон сложения скоростей. 

Поступательное движение твердого тела. Закон инерция и инер циальные системы отсчета. Второй закон Ньютона. Центр масс (центр инерции) механической системы в закон его движения. Закон сохранения количества движения. Энергия как универсальная, мера различных форм движения и взаимодействия. Работа силы и ее вы ражение через криволинейный интеграл. Закон сохранения энергии. Понятие о релятивистской динамике. Основной закон релятивистской динамики материальной точки. Релятивистское выражение для кине тической энергии. Взаимосвязь массы и энергии. Соотношение между полной энергией и импульсом частицы. Границы применимости классической механики. 

Поле как форма материи, осуществляющая силовое взаимодейст вие между частицами вещества. Потенциальное поле сил. Потенци альная анергия материальной точки во внешнем силовом  поле и ее связь с силой, действующей на материальную точку. Понятие о гра диенте скалярной функции. Напряженность, потенциал поля. Прин цип суперпозиции. Закон сохранения механической энергии и его связь с однородностью времени. Удар абсолютно упругих и неупру гих тел. Закон сохранения и превращения энергии как проявление неуничтожимости материи и ее движения.

Элементы кинематики вращательного движения. Угловая ско рость и угловое ускорение, их связь с линейными величинами. Мо мент силы. Момент количества движения тела относительно непод вижной оси вращения. Момент инерции тела относительно оси. Уравнение динамики вращательного движения твердого тела относи тельно неподвижной оси. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Закон сохранения количества движения.

Поле внутри проводника и у его поверхности. Распределение зарядов в проводнике. Электроемкость уединенного проводника. Кон денсаторы. Энергия заряженного уединенного проводника, конденса тора. Энергия электростатического  поля. Объемная плотность энергии. Постоянный электрический ток, его характеристики и условия существования. Классическая электронная теория электропроводно сти металлов.  Вывод закона Ома в дифференциальной форме из электронных представлений. Обобщенный закон Ома в интегральной форме. Разность потенциалов, электродвижущая сила, напряжение. Границы применимости закона Ома. Ток в газах. Плазма. Дебаевский радиус экранирования. Работа выхода электронов из металла. Термоэлектронная эмиссия.
Теория Максвелла для электромагнитного поля