Примеры решения типовых задач электрический ток

Электротехника
Расчет цепей постоянного тока
Расчет цепей переменного тока
Расчет трехфазных цепей
Примеры  решения типовых задач
Лабораторные работы
Методические указания к решению задачи
Расчет сглаживающего фильтра
Трехфазные цепи
Цепи несиносоидального тока
Математика
Интегрирование тригонометрических функций
Вычисление интегралов от рациональных функций
Интегрирование рациональных функций
Повторные интегралы
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Теорема Остроградского-Гаусса
Независимость криволинейных интегралов от пути интегрирования
Физические приложения двойных интегралов
Физические приложения криволинейных интегралов
Физические приложения поверхностных интегралов
Физические приложения тройных интегралов
Теорема Стокса
Поверхностные интегралы первого рода
Поверхностные интегралы второго рода
Тройные интегралы в декартовых координатах
Тройные интегралы в цилиндрических координатах
Тройные интегралы в сферических координатах
Производная показательной и логарифмической функции
Производная степенной функции
Производная произведения и частного функций
Дифференцирование и интегрирование степенных рядов
Найти производную функции
Примеры вычисления производной
Производная обратной функции
Логарифмическое дифференцирование
Исследование функций с помощью производных
Физика
Электродинамика
Электростатика
Электрический ток
Термодинамика
Решение задач
Основные операции над векторами
Кинематика твердого тела
Силы Виды взаимодействий
Закон сохранения импульса
Гравитация Законы Кеплера
Неинерциальные системы отсчета
Механические колебания
Физический маятник
Математический маятник
Резонанс
Специальная теория относительности

Преобразования Лоренца

Математическая физика
Химия
Примеры решения задач
контрольной работы
Современная теория строения
атомов и молекул
Контрольные задания
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Химическая кинетика
Электролиз
Начертательная геометрия
Сечение геометрического тела
Аксонометрические проекции
Сборочный чертеж
Построение тел вращения
Развертка прямой призмы
Машиностроительное черчение
Профиль  резьбы
Работа «Соединение болтом»
Работа «Соединение шпилькой»
Сварные соединения
Разновидность  крепежных изделий
Выполнить эскизы с натуры
Шероховатостью поверхности
Выполнениечертежа сборочной единицы
Деталирование чертежа общего вида
Построение смешанного сопряжения.
Направления штриховки в разрезах
Сопромат
Деформации и перемещения при кручении валов
Расчет статически неопределимых балок
Действие с силами и моментами
Расчеты на прочность по допускаемым напряжениям
Расчет цилиндрических витых пружин

Примеры решения задач на прочность

Ядерная энергетика
Реакторы атомных станций
Ядерное топливо и ядерные отходы
Ядерно-энергетические транспортные установки
Блочный щит управления энергоблока
Реакторы на быстрых нейтронах
АЭС с реакторами ВВЭР нового поколения
РБМК - Реактор Большой Мощности Канальный
ВВЭР и РБМК: сравнительные характеристики
Энергосберегающие технологии
Альтернативная энергетика
Информатика
Тонкая клиентная сеть
Создание корпоративной Webсети
Восстановление ЛВС после аварий
Беспроводные сети
Серверы масштаба предприятия и суперсерверы
Протоколы сетевого управления
Прокси-серверы
Оценка эффективности локальной сети
Производительность рабочих станций и серверов ЛВС
Кабельные системы для локальных сетей
История искусства
Архитектура
Интерьеры античности и возраждения в Италии
Вид на Акрополь
План терм Константина; разрез и фасады
План  и разрез Сакристии Сан Лоренцо
Интерьеры XIV—XV веков и эпохи классицизма в России
Интерьеры Успенского собора
Усадьба «Высокие горы»
 
Цифровая фотография

Постоянный электрический ток, его характеристики; условия, необходимые для существования. Электродвижущая сила. Закон Ома для участка цепи и для замкнутой цепи. Сопротивление как электрическая характеристика резистора. Зависимость сопротивления резистора от температуры.

Пояснение к теме “Закон Ома для участка цепи”

Примеры практического применения закона Ома.

Сила тока. Электрический ток – это направленное движение электронов по проводнику. Ток характеризуется направлением и величиной. Принято считать, что ток идет от плюса источника через внешнюю цепь к минусу источника, а затем - через источник и снова во внешнюю часть цепи.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ. СОПРОТИВЛЕНИЕ Для каждого проводника – твердого, жидкого и газообразного – существует определенная зависимость силы тока от приложенной разности потенциалов на концах проводника; эту зависимость выражает т.н. вольт – амперная характеристика проводника Зависимость силы тока от напряжения носит название закон Ома.

Произведение  силы тока на сопротивление иногда называется падением напряжения.

Термоэлектричество. При прохождении тока проводники нагреваются – и электрическая энергия переходит в тепловую.

Свойства параллельного соединения

Электрическая работа и мощность

КАК СОЗДАЕТСЯ ТОК В ПРОВОДНИКЕ

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Пример. Линия из медного провода сечением 25 мм2 и длиной 100 м соединяет генератор с электродвигателем. Сила тока в цепи 40 А при напряжении на клеммах электродвигателя 220 В. Найдите мощность электрического тока, потребляемую двигателем, мощность потерь в линии, напряжение на клеммах генератора. Учтите, что линия двухпроводная.

Примеры решения задач Пример. Участок цепи состоит из двух источников тока, соединенных в батарею одноименными полюсами. 1 = 12 B, r1 = 0,1 Ом, 2 = 6 B, r2 = 0,2 Ом.

Разъяснения к теме “Электрическая цепь и ее элементы”. Итак, электрическая цепь – это источник и потребитель. Это схема простейшей электрической цепи. Стрелками указано направление тока в цепи, но и без этого надо знать: ток идет от плюса источника через внешнюю часть цепи к минусу источника, а затем и через внутреннюю часть цепи, через источник, там от минуса – к плюсу, а затем – снова во внешнюю цепь.

Генератор с ЭДС 80 В и внутренним сопротивлением 0,2 Ом соединен со сварочным аппаратом, сопротивление подводящих проводов 0,1 Ом. Найти силу тока в цепи, напряжение на зажимах сварочного аппарата и силу тока короткого замыкания генератора.

Пример решения задачи на последовательное соединение потребителей

ТОК В ВАКУУМЕ. Вакуум является идеальным изолятором, т.к. в нсм частицы практически не взаимодействуют, однако в нсм можно создать электрический ток если внести в него заряды извне. Для этой цели используется явление термоэлектронной эмиссии. Оно заключается в том, что при высокой температуре с поверхности металла начинаю вылетать электроны. Наиболее широко это явление используется в электронных лампах,  простейшая из них - диод.

Микроэлектроника является одной из наиболее динамично развивающихся и востребованных отраслей науки и техники. Элементы современных СБИС и микрооптикоэлектромеханических систем (МОЭМС) представляют собой сложные структуры, в основу функционирования которых положены разнообразные физические эффекты. Разработка подобных элементов практически невозможна без решения уравнений математической физики, представляющих собой, как правило, дифференциальные уравнения (ДУ) в частных производных.

Основы физики и электротехники. Лекции, курсовые, задачи, учебники