Интегрирование тригонометрических функций Вычисление интегралов от рациональных функций Повторные интегралы Криволинейные интегралы первого рода Теорема Остроградского-Гаусса Физические приложения двойных интегралов

Выполнение курсовых (контрольных) работ по математике

Теорема Остроградского-Гаусса

Обозначим через G трехмерное тело, ограниченное кусочно-непрерывной, гладкой, замкнутой поверхностью S с внешней нормалью. Предположим, что задано векторное поле

компоненты которого имеют непрерывные частные производные. Согласно формуле Остроградского-Гаусса, где через обозначена дивергенция векторного поля (она обозначается также символом ). Символ указывает, что поверхностный интеграл вычисляется по замкнутой поверхности. Формула Остроградского-Гаусса связывает поверхностные интегралы второго рода с соответствующими тройными интегралами. Данную формулу можно записать также в координатной форме: В частном случае, полагая , получаем формулу для вычисления объема тела G:

Пример Вычислить поверхностный интеграл , где S − внешне ориентированная поверхность сферы, заданная уравнением .

Решение. Используя формулу Остроградского-Гаусса, можно записать Вычислим полученный тройной интеграл в сферических интегралах.

Применяя теорему Остроградского-Гаусса, вычислить поверхностный интеграл от векторного поля , где S − поверхность тела, образованного цилиндром и плоскостями z = −1, z = 1

Используя формулу Остроградского-Гаусса, оценить поверхностный интеграл от векторного поля , где S − поверхность тела, ограниченного и плоскостью z = 1.

Вычислить поверхностный интеграл от векторного поля , где S − поверхность параллелепипеда, образованного плоскостями x = 0, x = 1, y = 0, y = 2, z = 0, z = 3

 

Дифференцирование и интегрирование степенных рядов