Интегрирование рациональных функций Криволинейные интегралы второго рода Поверхностные интегралы первого рода Тройные интегралы в декартовых координатах Производная степенной функции Найти производную функции

Выполнение курсовых (контрольных) работ по математике

Тройные интегралы в сферических координатах

Сферическими координатами точки M(x,y,z) называются три числа − ρ, φ, θ , где

ρ − длина радиуса-вектора точки M; φ − угол, образованный проекцией радиуса-вектора на плоскость Oxy и осью Ox; θ − угол отклонения радиуса-вектора от положительного направления оси Oz (рисунок 1).
Рис.1

Обратите внимание, что определения ρ, φ в сферических и цилиндрических координатах отличаются друг от друга. Сферические координаты точки связаны с ее декартовыми координатами соотношениями Якобиан перехода от декартовых координат к сферическим имеет вид: Раскладывая определитель по второму столбцу, получаем Соответственно, абсолютное значение якобиана равно Следовательно, формула замены переменных при преобразовании декартовых координат в сферические имеет вид: Тройной интеграл удобнее вычислять в сферических координатах, когда область интегрирования U представляет собой шар (или некоторую его часть) и/или когда подынтегральное выражение имеет вид f (x2 + y2 + z2). Иногда выгодно использовать т.н. обощенные сферические координаты, связанные с декартовыми формулами В этом случае якобиан равен

Найти интеграл , где область интегрирования U − шар, заданный уравнением x2 + y2 + z2 = 25.

Вычислить интеграл xyzdxdydz, где область U представляет собой часть шара x2 + y2 + z2R2, расположенную в первом октанте x ≥ 0, y ≥ 0, z ≥ 0.

Найти тройной интеграл где область U ограничена эллипсоидом

Вычислить интеграл используя сферические координаты

Определение производной Рассмотрим функцию f(x), область определения которой содержит некоторый открытый интервал вокруг точки x0. Тогда функция f(x) является дифференцируемой в точке x0, и ее производная определяется формулой

Найти производную функции .


Тройные интегралы в цилиндрических координатах