Биоэнергетическая технология Проектирование активных систем солнечного горячего водоснабжения Схемы систем горячего водоснабжения Проектирование ветроэнергетических установок

Альтернативная энергетика

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ - комплекс операций по поддержанию работоспособности и исправности объекта (систем и элементов) при использовании по назначению, в режиме ожидания, при хранении и транспортировании.

Биоэнергетическая технология. Биогазовые технологии – радикальный способ обезвреживания и переработки разнообразных органических отходов растительного и животного происхождения, включая экскременты животных и человека, с одновременным получением высококалорийного газообразного топлива – биогаза и высокоэффективных экологически чистых органических удобрений. Биогазовые технологии – это решение проблем экологии, энергетики, агрохимии и капитала.

Процесс получения биогаза известен очень давно: в Китае – более 5 тыс. лет, в Индии – более 2 тыс. лет. Современные биогазовые технологии широко используются как в развитых (Дания, Германия, Англия, Франция, Италия, Австрия и др.), так и развивающихся странах (Китай, Индия, Индонезия, страны Южной Америки, некоторые страны африканского континента).

У нас в стране (и в бывшем СССР) работы по развитию биоконверсии почти не велись до настоящего времени. Хотя биоконверсия может оказаться полезной, а подчас спасительной при решении 3-х основных современных проблем:

экологической;

продовольственной (получения высококачественных удобрений);

энергетической (получения топлива).

Устойчивое получение CH4 бактерии (метаногены) превращает значительную часть органического субстрата в ценное топливо. К параметрам устойчивого получения CH4 относятся:

механико- и физикохимическая характеристика сырья; время удерживания бродящего субстрата в реакторе;

скорость и характер замены сырья в реакторе;

объем рабочего реактора по органическому веществу;

положение бактериальной системы в реакторе – свободное, закрепленное, закреплённо-подвижное;

соотношение объема расщепления биополимеров и образования летучих ЖК и объема их конверсии в СН4.

У нас в стране животноводство и птицеводство – нетронутый источник электроэнергии. Одного навоза 560 млн т/год. Для его переработки потребуется 30 тыс. биоустановок с V реакторов 250-300 м3 и 5-суточной экспозицией сбраживания.

Кроме биогаза можно получать высококонцентрированное обеззараженное органическое удобрение без запаха, с влажностью 65-70 %. Процесс метанового сбраживания – за счёт совершенствования конструкции менантенков, использования активных заквасок, максимального исключения тепловых потерь, использования раздельного способа сбраживания и т.д. Проблема в том, что для сгущения навоза нужны центрифуги, отстойники, виброгрохоты. Метод анаэробной переработки биомассы в биогаз и удобрения с инженерной точки зрения довольно хорошо изучен в лабораторных условиях. Полученные результаты уд. Q по биогазу ~ 4 м3 с 1 м3 реактора позволяет действительно эффективно получать товарную энергию из органических отходов в виде биогаза.

Совершенными и экономичными признаны установки непрерывного действия, обеспечивающие равномерный выход биогаза и навоза.

Установка состоит из навозоприемника, двух бродильных камер, мерного резервуара; насосных № 1 и № 2 с фекальными насосами; системы труб с арматурой, газгольдера.

Процесс сбраживания – мезофильный с подогревом до 32-34 °С, заполнение камер – непрерывное с ежесуточной подачей сырого навоза в количестве 5 % от объема заполнения камер, т.е. длительность брожения составляет 20-21 день.

Постоянная температура брожения поддерживается впуском пара в камеры брожения.

Установка работает по следующей технологической схеме: навозная масса из коровника по закрытым каналам самосплавом подается в навозоприемник, где он смешивается с жижей и фекальным насосом перекачивается в мерный резервуар.

Отсюда масса идет в распределительный бак сырого навоза, установленный на втором этаже насосной. Из него самотеком поступает в бродильные камеры.

Сброженная масса самотеком поступает в открытое навозохранилище. Из навозохранилища готовый жидкий навоз вывозят на поля жижеразбрасывателями.

Полученный в результате брожения газ собирается в верхней части бродильных камер и по трубопроводу поступает в газгольдер, проходя по пути через бак мокрой сероочистки (для освобождения от сероводорода). Давление в газгольдере – 300-400 мм вод. ст. Из газгольдера газ, по мере надобности, подается потребителям.

Один килограмм твердых отходов может дать 0,25 м3 биогаза. По теплотворной способности 1 м3 газа соответствует 0,6 л жидкого топлива. В сутки для 100 коров на подогрев воды расходуется 5-6 м3 газа. Один Квт∙ч электроэнергии соответствует расходу 0,7-0,8 м3 газа. Одна тонна сброженного навоза увеличивает урожайность на 10-15 % по сравнению с использованием буртового навоза.

Расчет процесса метанового сбраживания

Объём навозоприёмника:

, (5.1)

где аcут – суточный выход навоза (влажность 92 %); ρn – плотность навоза, кг/м3 (ρn = 1 020 кг/м3); tn – время накопления навоза, сут; kB – коэффициент, учитывающий изменение плотности навоза, в зависимости от исходной влажности (kB=1,5).

Продолжительность сбраживания:

tc6= 100/q', сут, где q' – выход биогаза, приходящийся на 1т переработанного навоза, м3.

Суточный выход биогаза

 Gб = Qсутq'. (5.2)

Общая тепловая энергия получаемого биогаза:

Qобщ = Gб∙Сб, (5.3)

где Сб = 24 МДж/м3 – теплотворная способность биогаза.

Расход теплоты на собственные нужды

Qс.н.= Qm.p. + Qk.t., (5.4)

где Qk.t. – расход теплоты на компенсацию теплопотерь.

Общее количество биогаза, идущего на собственные нужды:

Gб.н. = Qc.н./Cб, (5.5)

Выход товарного биогаза:

Gб.т. =Gб – Gб.н., (5.6)

Тепловая мощность котла КГ-1500:

WK=1500 Cб/Gб. (5.7)

Конструкционный расчет метантенка

Самым важным элементом биогазовой установки является метантенк. От его конструкции зависит производительность и экономическая эффективность всей установки.

Анализ форм метантенков.

A) Овальная. Достоинства: наилучшие условия для перемешивания и отвода осадков, разрушения плавающей корки.

Недостатки: высокая стоимость изготовления.

Б) Цилиндрическо-коническая. Достоинства: обеспечивает удаление сверху корки, снизу – отстоявшегося субстрата (шлама).

Материалы: сталь, пластмасса, бетон.

В) Цилиндрическая. Достоинства: простая технологичность изготовления.

Недостатки: условия для перемешивания тока жидкости менее благоприятны, требуют значительных удельных затрат энергии.

Г) Наклонно-горизонтальное расположение цилиндрического метантенка.

Достоинства: наклонное расположение облегчает стекание шлама к выгрузному отверстию, лучше заполнение, перемешивание.

Недостатки: подземное расположение камеры сбраживания ухудшает теплотехнические показатели.

Материалы: листовая сталь.

Д) Горизонтальное расположение цилиндрического метантенка. Достоинства: позволяет сбраживать большое количество субстрата, экономия затрат, удобство разрушения корки.

Недостатки: процесс брожения протекает стихийно, бесконтрольно, значительная продолжительность сбраживания.

Принимаем для проекта цилиндрическо-коническую форму метантенка.

Габаритные размеры реактора определяем исходя из его емкости.

Для теплоизоляции применяем маты из стеклянного штапельного волокна.

Материалом для изготовления основного корпуса – листовая сталь.

Выводы:

1) В результате анаэробной переработки общее содержание основных биогенных игумусообразующих веществ в навозе КРС не претерпевало заметных изменений. Темметангенерация сопровождалась специфическими изменениями в содержании аммонийного азота, углерода, сухого органического вещества, аминокислот и жирных летучих кислот.

2) Анаэробная переработка бесподстилочного навоза обеспечивала эффективное обеззараживание его от семян сорных растений, яиц гельминтов.

3) В процессе метановой ферментации отмечалось улучшение реологических свойств сброженного навоза: снижалось общее содержание взвешенных частиц, количество частиц крупного размера, уменьшалась плотность навоза.

4) Влияние сброженного бесподстилочного навоза КРС на урожай и качество сельскохозяйственных культур не уступало действию исходного бесподстилочного навоза.

Мини-теплоэлектростанция на отходах. Биогазовые технологии – радикальный способ обезвреживания и переработки разнообразных органических отходов растительного и животного происхождения, включая экскременты животных и человека, с одновременным получением высококалорийного газообразного топлива – биогаза и высокоэффективных экологически чистых органических удобрений. Биогазовые технологии – это решение проблем экологии, энергетики, агрохимии и капитала.

Биоэнергетические установки, производимые в России, и их краткие технические характеристики Установка предназначена для переработки всех видов органических отходов крестьянского или фермерского хозяйства, имеющего на своем подворье до 5-6 голов крупного рогатого скота или 50-60 голов свиней, или 500-600 голов птицы, с получением газообразного топлива (биогаза) и экологически чистых органических удобрений.

Использование водной энергии земли Три четверти земной поверхности занято водой, лишь одна четверть сушей. Поэтому человека привлекала проблема полезного использования воды, в том числе и в энергетике. Время применения гидравлических двигателей насчитывает более 2000 лет. Сначала как источник механической энергии использовались отдельные водяные колеса, затем отдельные водяные турбины и, наконец, гидростанции. В России насчитывается 575 тыс. рек протяженностью более 4 млн км. По количеству и длине рек Россия занимает первое место в мире. Их энергия, технически пригодная к использованию, составляет около 4 000 млрд кВт∙ч. По запасам гидроэнергии Россия превосходит все страны. Например, следующие за Россией США и Бразилия имеют гидроэнергетические запасы, примерно в 1,6 раза меньшие.

Энергия Мирового океана Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн км2) занимают моря и океаны – акватория Тихого океана составляет 180 млн км2 Атлантического 93 млн км2, Индийского 75 млн км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 °, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия морских течений. Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).

Биохимическая энергия В океане существует замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90 м) бурых водорослей.

Выгоды использования энергии океана В океане, который составляет 71 % поверхности планеты, потенциально имеются различные виды энергии: энергия волн и приливов, энергия химических связей газов, питательных веществ, солей и других минералов, скрытая энергия водорода, находящегося в молекулах воды, энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Низкопотенциальные источники тепла (НИТ) Насосы тепла Что такое тепловой насос? Сейчас для обогрева домов в сельской местности инженеры и ученые предлагают такие схемы. В землю закапывают трубы, и находящаяся в них жидкость, например вода или антифриз, получает ту же температуру, что и грунт. В земле на глубине метр-два всегда тепло, даже в сильные морозы там 6-8 °С тепла, а то и больше. От теплособирающих труб тепло передается фреону во втором контуре, и он испаряется. Установленный в доме компрессор сжимает газ, тот конденсируется в жидкость, а тепло конденсации служит для обогрева помещения. Потом эта жидкость испаряется за счет подземного тепла, и цикл повторяется.

УРОВЕНЬ АВАРИЙНОЙ ГОТОВНОСТИ - установленная степень готовности персонала, органов управления по делам гражданской обороны и чрезвычайным ситуациям, других привлекаемых сил, а также используемых технических средств для действий по защите персонала и населения в случае аварии на АС.
Развитие нетрадиционной энергетики