Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Пример 5. Плоский конденсатор, расстояние между пластинами которого см, заряжен до разности потенциалов В и отключен от источника. Площадь пластин конденсатора см2. Определить заряд конденсатора. Как изменяется емкость, разность потенциалов, энергия конденсатора и объемная плотность энергии его поля, если в пространство между ними поместить плитку из фарфора толщиной см и прижать к ней пластины?

Решение. Емкостью конденсатора называют величину, равную отношению заряда конденсатора к разности потенциалов между пластинами:

 . (1)

Электромагнитная индукция

Явление электромагнитной индукции (опыты Фарадея)

В гл. 14 было показано, что электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г. английским физиком М. Фарадеем, открывшим явление электромагнитной индукции. Оно заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции.

Опыт I (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.

Опыт П. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении или выключении тока, его увеличении или уменьшении, сближении или удалении катушек.

Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции сквозь контур.

Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).

Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с помощью магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.

Закон Фарадея и его вывод из закона сохранения энергии

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электромагнитной индукции  определяются только скоростью изменения магнитного потока, т. е.

Теперь необходимо выяснить знак . В § 120 было показано, что знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта (см. § 109). Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э. д. с.

  (123.2)

Знак минус показывает, что увеличение потока  вызывает э. д. с.  т. е. поле индукционного тока направлено навстречу потоку; уменьшение потока  вызывает  т.е. направления потока и поля индукционного тока совпадают. Знак минус в формуле (123.2) определяется правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сделал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоскости контура, и может свободно перемещаться (см. рис. 177). Под действием силы Ампера F, направление которой показано на рисунке, проводник перемещается на отрезок dx. Таким образом, сила Ампера производит работу (см. (121.1)) dA=IdФ, где dФ — пересеченный проводником магнитный поток.

Согласно закону сохранения энергии, работа источника тока за время dt () будет складываться из работы на джоулеву теплоту (I2Rdt) и работы по перемещению проводника в магнитном поле (IdФ):

где R — полное сопротивление контура. Тогда

=  есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулировать еще таким образом: э.д.с.  электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с.  не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнитной индукции? Если проводник (подвижная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противоположно току, т. е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов). Таким образом, возбуждение э.д.с. индукции при движения контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.

Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции возможно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора ЕB этого поля по любому неподвижному контуру L проводника представляет собой э. д. с. электромагнитной индукции:

  (123.3)

Ферромагнетики.

Примеры: железо, никель.

Свойства:

1.

2. Остаточная намагниченность: вещество сохраняет сильную намагниченность после выключения поля.

3. При нагревании становится парамагнетиком.

Теорема о циркуляции индукции магнитного поля.

(Закон полного тока)

Циркуляция вектора индукции магнитного поля по замкнутому контуру равна магнитной постоянной умноженной на сумму токов, охватываемых этим контуром.

Если циркуляция не равна нулю, то поле вихревое, силовые линии замкнутые.

Вывод индукции поля длинного соленоида.

I. ; ; N

 =  =

II. Тороид


Фотопроводимость полупроводников