Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Пример 5. Плоский конденсатор, расстояние между пластинами которого см, заряжен до разности потенциалов В и отключен от источника. Площадь пластин конденсатора см2. Определить заряд конденсатора. Как изменяется емкость, разность потенциалов, энергия конденсатора и объемная плотность энергии его поля, если в пространство между ними поместить плитку из фарфора толщиной см и прижать к ней пластины?

Решение. Емкостью конденсатора называют величину, равную отношению заряда конденсатора к разности потенциалов между пластинами:

 . (1)

Работа по перемещению проводника и контура с током в магнитном поле

На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. § 111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.

Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна

Под действием этой силы проводник переместится параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна

 

так как ldx=dS — площадь, пересекаемая проводником при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,

  (121.1)

т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.

Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами проводника: AВС и CDА.

Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е.

 (121.2)

Силы, приложенные к участку CDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2>0. .Согласно (121.1), эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно,

  (121.3)

Силы, действующие на участок AВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA1<0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно,

  (121.4)

Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:

где dФ2—dФ1=dФ' — изменение магнитного потока сквозь площадь, ограниченную контуром с током. Таким образом,

 (121.5)

Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном .перемещении контура в магнитном поле:

  (121.6)

т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.

Задачи

14.1. Тонкое кольцо массой 15 г и радиусом 12 см несет заряд, равномерно распределенный с линейной плотностью 10 нКл/м. Кольцо равномерно вращается с частотой 8 с–1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Определить отношение магнитного момента кругового тока, создаваемого кольцом, к его моменту импульса. [251 нКл/кг]

14.2. По проводу, согнутому в виде квадрата со стороной, равной 60 см, течет постоянный ток 3 А. Определить индукцию магнитного поля в Центре квадрата. [5,66 мкТл]

14.3. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми равно 25 см, текут токи 20 и 30 А в противоположных направлениях. Определить магнитную индукцию В в точке, удаленной на r1=30 см от первого и r2=40 см от второго проводника. [9,5 мкТл]

14.4. Определить магнитную индукцию на оси тонкого проволочного кольца радиусом 10 см, по которому течет ток 10 А, в точке, расположенной на расстоянии 15 см от центра кольца. [10,7 мкТл]

14.5. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии R. Чтобы их раздвинуть до расстояния 3R, на каждый сантиметр длины проводника затрачивается работа A=220 нДж. Определить силу тока в проводниках. [10 А]

14.6. Определить напряженность поля, создаваемого прямолинейно равномерно движущимся со скоростью 500 км/с электроном в точке, находящейся от него на расстоянии 20 нм и лежащей на перпендикуляре к скорости, проходящем через мгновенное положение электрона. [15,9 А/м]

14.7. Протон, ускоренный разностью потенциалов 0,5 кВ, влетая в однородное магнитное поле с индукцией 0,1 Тл, движется по окружности. Определить радиус этой окружности. [3,23 см]

14.8. Определить, при какой скорости лучок заряженных частиц, проходя перпендикулярно область, в которой созданы однородные поперечные электрическое и магнитное поля с E=10 кВ/м и В= 0,2 Тл, не отклонятся. [50 км/с]

14.9. Циклотрон ускоряет протоны до энергии 10 МэВ. Определить радиус дуантов циклотрона при индукции магнитного поля 1 Тл. [>47 см]

14.10. Через сечение медной пластинки толщиной 0,1 мм пропускается ток 5 А. Пластинка помещается в однородное магнитное поле с индукцией 0,5 Тл, перпендикулярное ребру пластинки и направлению тока. Считая концентрацию электронов проводимости равной концентрации атомов, определить возникающую в пластине поперечную (холловскую) разность потенциалов. Плотность меди 8,93 г/см3. [1,85 мкВ]

14.11. По прямому бесконечно длинному проводнику течет ток 15 А. Определить, пользуясь теоремой о циркуляции вектора В, магнитную индукцию В в точке, расположенной на расстоянии 15 см от проводника. [20 мкТл]

14.12. Определить, пользуясь теоремой о циркуляции вектора В, индукцию и напряженность магнитного поля на оси тороида без сердечника, по обмотке которого, содержащей 300 витков, протекает ток 1 А. Внешний диаметр тороида равен 60 см, внутренний — 40 см. [0,24 мТл; 191 А/м]

14.13. Поток магнитной индукции сквозь площадь поперечного сечения соленоида (без сердечника) Ф=5 мкВб. Длина соленоида l=25 см. Определить магнитный момент pm этого соленоида. [1 А×м2]

14.14. Круглая рамка с током площадью 20 см2 закреплена параллельно магнитному полю (В=0,2 Тл), и на нее действует вращающий момент 0,6 мН×м. Рамку освободили, после поворота на 90° ее угловая скорость стала 20 с–1. Определить: 1) силу тока, текущего в рамке; 2) момент инерции рамки относительно ее диаметра. [1) 1,5 А; 2) 3×10–6 кг×м2]

Намагниченность: .

Магнитная восприимчивость:

Магнитная проницаемость:  =  = , где  - напряженность внешнего поля (поля макро-токов),  - поле вещества (микро-токов),  - магнитная проницаемость.

Для однородной среды: - число; для неоднородной: ; для изотропной - число (функция); для анизотропной:  - матрица 3 на 3.

 показывает, во сколько раз среда усиливает магнитное поле.

Диамагнетики

Примеры: золото, серебро, вода.

Без поля собственный момент равен нулю:

В поле: ,

Вывод: Немного ослабляют магнитное поле  

Выталкиваются из поля (пример: пламя свечи)

Парамагнетики

Примеры: платина, аллюминий.

Без поля:

В поле: ,

Вывод: Немного усиливают магнитное поле.

Втягиваются в магнитное поля.


Фотопроводимость полупроводников