Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Примеры решения задач

Пример 1. Электродвигатель работает в сети с напряжением В. Мощность двигателя кВт, коэффициент полезного действия . Определить силу тока, потребляемую двигателем, и сопротивление его обмоток.

Решение. Мощность двигателя

,

где I – сила тока, потребляемая двигателем. Отсюда

.

Электрические токи в металлах, вакууме и газах

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке* (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость ávñ упорядоченного движения электронов можно оценить согласно формуле (96.1) для плотности тока: j=пeávñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концентрации носителей тока n = 8×1028м–3 средняя скорость ávñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, ávñ<<áuñ, т. е. даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обусловливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость ávñ + áuñ можно заменять скоростью теплового движения áuñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c=3×108м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где átñ — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

  (103.1)

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время átñ свободного пробега определяется средней длиной свободного пробега álñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной áuñ + ávñ (áuñ — средняя скорость теплового движения электронов). В § 102 было показано, что ávñ<<áuñ, поэтому

Подставив значение átñ в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала

  (103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

 (103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем ázñ столкновений:

  (103.4)

Если n — концентрация электронов, то в единицу времени происходит пázñ столкновений и решетке передается энергия

  (103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

  (103.6)

Величина w является удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности между w и E2 по (103.2) есть удельная проводимость g; следовательно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (l) к удельной проводимости (g) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:

где b — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение b: b=3(k/e)2, где k—постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b=2(k/e)2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная g, должна возрастать пропорционально   (в (103.2) п и álñ от температуры не зависят, а áuñ~). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T (см. § 98).

Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить g, совпадающие с опытными значениями, надо принимать álñ значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. § 73), теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна 3/2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.

Затруднения классической электронной теории электропроводности металлов.

Классическая теория смогла объяснить полученные ранее экспериментально законы Ома и Джоуля – Ленца, но есть и существенные затруднения. Основными являются следующие:

Теоретическое значение проводимости изменяется с температурой , экспериментальная же зависимость .

Классическая теория не в состоянии объяснить такое явление как сверхпроводимость.

Имеются и другие затруднения и в этом недостаточность классической теории.

Современная квантовая теория электропроводимости металлов показывает, что все трудности классической теории связаны с тем, что представление об электронах как идеальном газе является грубым приближением. На самом деле электроны внутри металла не являются такими свободными, как это следует из классической теории.

В современной квантовой теории показывается, что электроны внутри металла, как и электроны в атоме не могут иметь любую энергию, а лишь вполне дискретные значения энергии – энергия электронов квантуется.

  5. Законы Кирхгофа

1. Первый закон Кирхгофа:

Алгебраическая сумма сил токов, сходящихся в узле, равна нулю.

При этом токи, идущие к узлу, принято считать положительными, а от узла – отрицательными (можно и наоборот – это несущественно).

Рис. 20.3

Заметим, что узел – это точка, где сходятся три и более тока. Например, для рис. 20.3 первый закон запишется так:

.

2. Второй закон Кирхгофа (он относится к любому выделенному в цепи замкнутому контуру):

Алгебраическая сумма произведений сил токов в отдельных участках произвольного замкнутого контура на их сопротивления (сумма падений напряжений) равна алгебраической сумме ЭДС, действующих в этом контуре.

Применение этих законов рассмотрим на следующем примере. Дана электрическая цепь (рис. 20.4)

Дано:

В, В, В,

Ом, Ом…. Ом.

Требуется найти токи .

Для узла А составим уравнения по первому закону Кирхгофа:

Для контура I запишем уравнение в соответствии со 2-ым законом Кирхгофа.

Рис. 20.4

Причем падения напряжения и ЭДС берутся со знаком «+» если токи и ЭДС совпадают с направлением обхода (для контура I мы выбрали направление обхода «по часовой стрелке». Направление ЭДС указано на схеме стрелками ). Таким образом:

Пусть второй контур совпадает с внешним обходом цепи и направление обхода также по часовой стрелке. Тогда 2-ой закон Кирхгофа для контура II:

Итак, получили систему уравнений:

Решаем эту систему линейных уравнений с помощью определителей (метод Крамера).

 

,

,

.

(А); (А).

Далее используя 1-ый закон Кирхгофа, найдем :

(А).

Отрицательные результаты означают, что на самом деле направление токов  и противоположно указанным на рис. 20.4.


Фотопроводимость полупроводников