Закон сохранения импульса Закон сохранения энергии Элементы механики жидкостей Движение тел в жидкостях и газах Основы термодинамики Твердые тела. Моно- и поликристаллы

Пример 4. Заряженная частица движется в магнитном поле по окружности со скоростью  Индукция магнитного поля В=0,3 Тл. Радиус окружности r=4 cм. Определить: 1) заряд частицы, если известно, что ее энергия равна Т=1,2∙104 эВ, 2) ускоряющую разность потенциалов, придавшую скорость частице.

Решение. 1. На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца, определяемая по формуле:

 Fл= QB, (1)

где Q – заряд частицы; В – магнитная индукция;  – скорость частицы; угол между векторами скорости и магнитной индукцией.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F12 = – F21, (7.1)

где F12 — сила, действующая на первую материальную точку со стороны второй;

F21 — сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Силы трения

Обсуждая до сих пор силы, мы не интересовались их происхождением. Однако в механике мы будем рассматривать различные силы: трения, упругости, тяготения.

Из опыта известно, что всякое тело, движущееся по горизонтальной поверхности другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. Это можно объяснить существованием силы трения, которая препятствует скольжению соприкасающихся тел друг относительно друга. Силы трения зависят от относительных скоростей тел. Силы трения могут быть разной природы, но в результате их действия механическая энергия всегда превращается во внутреннюю энергию соприкасающихся тел.

Различают внешнее (сухое) и внутреннее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения, качения или верчения.

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются от слоя к слою. В отличие от внешнего трения здесь отсутствует трение покоя. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазочной прослойки »0,1 мкм и меньше).

Обсудим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся поверхностей; в случае же очень гладких поверхностей трение обусловлено силами межмолекулярного притяжения.

Рассмотрим лежащее на плоскости тело (рис. 11), к которому приложена горизонтальная сила F. Тело придет в движение лишь тогда, когда приложенная сила F будет больше силы трения Fтр. Французские физики Г. Амонтон (1663—1705) и Ш. Кулон (1736—1806) опытным путем установили следующий закон: сила трения скольжения Fтр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

Fтр =  f N ,

где f — коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Найдем значение коэффициента трения. Если тело находится на наклонной плоскости с углом наклона a (рис.12), то оно приходит в движение, только когда тангенциальная составляющая F силы тяжести Р больше силы трения Fтр. Следовательно, в предельном случае (начало скольжения тела) F=Fтр. или Psin a0 = f N = f P cos a0, откуда

f = tga0.

Таким образом, коэффициент трения равен тангенсу угла a0, при котором начинается скольжение тела по наклонной плоскости.

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

Fтр = f ист (N + Sp0),

где р0 — добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S — площадь контакта между телами; fист — истинный коэффициент трения скольжения.

Трение играет большую роль в природе и технике. Благодаря трению движется транспорт, удерживается забитый в стену гвоздь и т. д.

В некоторых случаях силы трения оказывают вредное действие и поэтому их надо уменьшать. Для этого на трущиеся поверхности наносят смазку (сила трения уменьшается примерно в 10 раз), которая заполняет неровности между этими поверхностями и располагается тонким слоем между ними так, что поверхности как бы перестают касаться друг друга, а скользят друг относительно друга отдельные слои жидкости. Таким образом, внешнее трение твердых тел заменяется значительно меньшим внутренним трением жидкости.

Радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т. д.). Сила трения качения определяется по закону, установленному Кулоном:

Fтр=fк N/r, (8.1)

где r — радиус катящегося тела; fк — коэффициент трения качения, имеющий размерность dim fк =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Способность тела и вещественного пространства отображать количественное изменение одного параметра системы соответствующим изменением остальных называется связью.

Одновременно тело есть система и как таковая имеет свое пространство и входит в систему других тел вещественного пространства, образуя с ними взаимосвязанную и взаимодействующую суперсистему. Всякое изменение положения тела сопровождается изменением количественных параметров всех его свойств, так же как и всех внешних связей в этой суперсистеме.

Из взаимосвязи параметров (свойств) следует, что количественное изменение одного параметра системы неизбежно вызывает линейные и нелинейные изменения всех остальных параметров данной системы.

Физическая система — материальное образование, внутренние и внешние параметры которого взаимосвязаны и взаимоуравновешены. Эти взаимосвязи при формализации отображаются уравнениями.

Все окружающие нас тела — системы.

Все они обладают одними и теми же свойствами, которые имеют одни и те же связи, но количественная величина каждого свойства индивидуальна, и это приводит к качественному различию тел.

Поскольку понятие «тело» является первичным и основным для понимания физических процессов, его следует определять, ориентируясь на реально существующий предмет, обобщая определение на все предметы.

За эталон тела может быть принят стальной шарик радиусом 1 см, обладающий бесчисленным количеством свойств, к которым относятся масса, объем, время, духовность, сила, скорость, ускорение, энергия, движение, отражение, «постоянная» тяготения... и т.д. [7].

Все свойства абсолютны, анизотропны, качественно взаимосвязаны, для системы равнозначимы, количественно изменяемы, имеют определенную размеренность и всегда принадлежат телу вне зависимости от того, обнаружили мы их или нет.

Сами по себе тела-субстанции размеренности и размеров не имеют и соотносятся между собой сообразно взаимосвязям и количественной величине своих свойств.

Одинаковые (тождественные) тела (включая элементарные частицы) в природе отсутствуют. Их существование отрицается диалектическим принципом бесконечности материи.

Другие тела имеют то же бесчисленное количество свойств, отличающихся от свойств стального шарика только количественными величинами. Совокупность количествен-ного отличия свойств и обусловливает качественное различие тел. Качественные зависимости и взаимосвязи свойств одинаковы у всех тел. Они-то и могут быть формализованы в виде физических законов, описывающих инвариантную взаимосогла-сованность между всеми свойствами.

Не может быть свойств, которые присутствовали бы у одних тел и отсутствовали у других, оставались всегда постоянными (например, «постоянная» тяготения, заряд и масса электрона и т.д.) или существовали самостоятельно (время, пространство...). Нет также отдельных, не связанных с другими конечных свойств (энергия, одон, хронон...), как и первичных неразложимых частиц (монады, ноль-частицы, кварки, глюоны, фридмоны...). Не существует одинаковых свойств одной размеренности (например, нет двух масс, массы инертной и гравитационной) или различной размеренности, как, например, постулируется в работе [8]: "масса т и энергия Е, по существу, одно и тоже; они представляют собой ни что иное, как две различные формы существования материи". Здесь утверждается адекватность двух различных свойств, с разной размеренностью, и оба свойства объявляются субстанцией.

Количественная величина свойств по объему тела меняется (следствие анизотропности), а с ними меняется само тело. Однако система взаимосвязи свойств остается инвариантной. Нарушение системы взаимосвязи внутренними или внешними силами приводит к изменению количественной величины свойств, к перераспределению связей между ними - до разрушения одних тел и образования других с тем же набором свойств, но с иной количественной величиной каждого свойства. Свойства — атрибут тела, и к ним неприменим «принцип дополнительности».

Тело — конечная по объему, отграниченная эквипотенциальной поверхностью часть природы, обладающая бесчисленной совокупностью качественных свойств, образующих систему.

Аналогом понятия «тело» являются вещь, предмет, иногда (в физике) объект, корпускула, частица. Каждое тело единственно и уникально (вселенная, галактика, планета, человек, дерево, камень, молекула, элементарная частица и т.д.).

Понятие, абстрагированное от отдельных тел и обусловливающее представление о совокупности тел и их свойств, носит название вещество (среда), и изучается физикой.

Вся окружающая нас природа (включая космическое пространство, являющееся подвижным эфиром) ¾ вещественна. И можно сказать, что вещество образует пространство или, гносеологически, материя образует пространство.

Вещество, а следовательно, и всякое тело, имеет структурную иерархию и бесконечно вглубь и наружу.

Под бесконечностью вглубь понимается возможность бесконечного дробления (деления на части) тела, которое, хотя и будет вызывать количественное изменение свойств получаемых тел (частиц), сопровождаемое качественными изменениями самих тел, никогда не приведет к получению неделимых далее остатков и никогда не закончится. Отсюда возникает парадоксальное на первый взгляд следствие: конечные по объему тела образуются частицами с бесконечными радиусами (например, физический радиус Земли R = ∞).

Под бесконечностью наружу понимается бесконечность движения из любой области пространства в любую сторону, которое всегда будет происходить в веществе, меняющем свою структуру и количественную величину свойств (т.е. качество), но никогда не кончится и не выйдет за пределы вещества в так называемую «полную» пустоту А. Эйнштейна (знаменитая древнегреческая аналогия — «полет копья»).

Очень похожую аналогию, хотя и демонстрирующую, по мнению автора, геометрию, "в значительной степени отличную от нашей", можно привести из работы А. Пуанкаре [9]:

«Вообразим, например, мир, заключенный внутри большой сферы и подчиненный следующим законам. Температура здесь неравномерна; она имеет наибольшее значение в центре и понижается по мере удаления от него, делаясь равной абсолютному нулю на шаровой поверхности, которая является границей этого мира.


Элементы квантовой механики