Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Пример 2. Три одинаковых источника тока с ЭДС В каждый соединены параллельно и создают в цепи ток А. Определить коэффициент полезного действия батареи, если внутреннее сопротивление каждого источника тока   Ом.

Решение. При параллельном подключении одинаковых источников тока их общая электродвижущая сила равна ЭДС одного источника. В то же время батарея источников создает разветвленный участок цепи, общее сопротивление которого может быть найдено из формулы проводимости группы параллельно соединенных элементов

Сегнетоэлектрики

Сегнетоэлектрики — диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в отсутствие внешнего электрического поля. К сегнетоэлектрикам относятся, например, детально изученные И. В. Курчатовым (1903—1960) и П. П. Кобеко (1897—1954) сегнетова соль NaKC4H4O6 • 4Н2О (от нее и получили свое название сегнетоэлектрики) и титанат бария ВаТiO3.

При отсутствии внешнего электрического поля сегнетоэлектрик представляет собой как бы мозаику из доменов — областей с различными направлениями поляризованности. Это схематически показано на примере титаната бария (рис. 139), где стрелки и знаки , Å указывают направление вектора Р. Так как в смежных доменах эти направления различны, то в целом дипольный момент диэлектрика равен нулю. При внесении сегнетоэлектрика во внешнее поле происходит переориентация дипольных моментов доменов по полю, а возникшее при этом суммарное электрическое поле доменов будет поддерживать их некоторую ориентацию и после прекращения действия внешнего поля. Поэтому сегнетоэлектрики имеют аномально большие значения диэлектрической проницаемости (для сегнетовой соли, например, emax»104).

Сегнетоэлектрические свойства сильно зависят от температуры. Для каждого сегнетоэлектрика имеется определенная температура, выше которой его необычные свойства исчезают и он становится обычным диэлектриком. Эта температура называется точкой Кюри (в честь французского физика Пьера Кюри (1859—1906)). Как правило, сегнетоэлектрики имеют только одну точку Кюри; исключение составляют лишь сегнетова соль (—18 и +24°С) и изоморфные с нею соединения. В сегнетоэлектриках вблизи точки Кюри наблюдается также резкое возрастание теплоемкости вещества. Превращение сегнетоэлектриков в обычный диэлектрик, происходящее в точке Кюри, сопровождается фазовым переходом II рода (см. § 75).

Диэлектрическая проницаемость e (а следовательно, и диэлектрическая восприимчивость {) сегнетоэлектриков зависит от напряженности Е поля в веществе, а для других диэлектриков эти величины являются характеристиками вещества.

Для сегнетоэлектриков формула (88.2) не соблюдается; для них связь между векторами поляризованности (Р) и напряженности (Е) нелинейная и зависит от значений Е в предшествующие моменты времени. В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса («запаздывания»). Как видно из рис. 140, с увеличением напряженности Е внешнего электрического поля поляризованность Р растет, достигая насыщения (кривая 1). Уменьшение Р с уменьшением Е происходит по кривой 2, и при Е=0 сегнетоэлектрик сохраняет остаточную поляризованность Р0, т.е. сегнетоэлектрик остается поляризованным в отсутствие внешнего электрического поля. Чтобы уничтожить остаточную поляризованность, надо приложить электрическое поле обратного направления (—Eс). Величина Еc называется коэрцитивной силой (от лат. coercitio — удерживание). Если далее Е изменять, то Р изменяется по кривой 3 петли гистерезиса.

Интенсивному изучению сегнетоэлектриков послужило открытие академиком Б. М. Вулом (1903—1985) аномальных диэлектрических свойств титаната бария. Титанат бария из-за его химической устойчивости и высокой механической прочности, а также из-за сохранения сегнетоэлектрических свойств в широком температурном интервале нашел большое научно-техническое применение (например, в качестве генератора и приемника ультразвуковых воли). В настоящее время известно более сотни сегнетоэлектриков, не считая их твердых растворов. Сегнетоэлектрики широко применяются также в качестве материалов, обладающих большими значениями e (например, в конденсаторах).

Следует упомянуть еще о пьезоэлектриках — кристаллических веществах, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризация даже в отсутствие внешнего электрического поля (прямой пьезоэффект). Наблюдается и обратный пьезоэффект — появление механической деформации под действием электрического поля. У некоторых пьезоэлектриков решетка положительных ионов в состоянии термодинамического равновесия смещена относительно решетки отрицательных ионов, в результате чего они оказываются поляризованными даже без внешнего электрического поля. Такие кристаллы называются пироэлектриками. Еще существуют электреты — диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электрического поля (электрические аналоги постоянных магнитов). Эти группы веществ находят широкое применение в технике и бытовых устройствах.

Проводники в электростатическом поле

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:

Отсутствие поля внутри проводника означает, согласно (85.2), что потенциал во всех точках внутри проводника постоянен (j = const), т. е. поверхность проводника в электростатическом поле является эквипотенциальной (см. § 85). Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы это было не так, то под действием касательной составляющей Е заряды начали бы по поверхности проводника перемещаться, что, в свою очередь, противоречило бы равновесному распределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности проводника. Это следует непосредственно из теоремы Гаусса (89.3), согласно которой заряд Q, находящийся внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен

так как во всех точках внутри поверхности D=0.

Найдем взаимосвязь между напряженностью Е поля вблизи поверхности заряженного проводника и поверхностной плотностью s зарядов на его поверхности. Для этого применим теорему Гаусса к бесконечно малому цилиндру с основаниями DS, пересекающему границу проводник — диэлектрик. Ось цилиндра ориентирована вдоль вектора Е (рис. 141). Поток вектора электрического смещения через внутреннюю часть цилиндрической поверхности равен нулю, так как внутри проводника Е1 (а следовательно, и D1) равен нулю, поэтому поток вектора D сквозь замкнутую цилиндрическую поверхность определяется только потоком сквозь наружное основание цилиндра. Согласно теореме Гаусса (89.3), этот поток (DDS) равен сумме зарядов (Q=sDS), охватываемых поверхностью: DDS=sDS т.е.

  (92.1)

или

 (92.2)

где e — диэлектрическая проницаемость среды, окружающей проводник.

Таким образом, напряженность электростатического поля у поверхности проводника определяется поверхностной плотностью зарядов. Можно показать, что соотношение (92.2) задает напряженность электростатического поля вблизи поверхности проводника любой формы.

Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные — по полю, отрицательные — против поля (рис. 142, а). На одном конце проводника будет скапливаться избыток положительного заряда, на другом — избыток отрицательного. Эти заряды называются индуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряженности вне проводника — перпендикулярными его поверхности (рис. 142, б). Таким образом, нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростатической индукцией.

Из рис. 142, б следует, что индуцированные заряды появляются на проводнике вследствие смещения их под действием поля, т. е. s является поверхностной плотностью смещенных зарядов. По (92.1), электрическое смещение D вблизи проводника численно равно поверхностной плотности смещенных зарядов. Поэтому вектор D получил название вектора электрического смещения.

Так как в состоянии равновесия внутри проводника заряды отсутствуют, то создание внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Следовательно, внутри полости поле будет отсутствовать. Если теперь этот проводник с полостью заземлить, то потенциал во всех точках полости будет нулевым, т. е. полость полностью изолирована от влияния внешних электростатических полей. На этом основана электростатическая защита — экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Вместо сплошного проводника для защиты может быть использована густая металлическая сетка, которая, кстати, является эффективной при наличии не только постоянных, но и переменных электрических полей.

Свойство зарядов располагаться на внешней поверхности проводника используется для устройства электростатических генераторов, предназначенных для накопления больших зарядов и достижения разности потенциалов в несколько миллионов вольт. Электростатический генератор, изобретенный американским физиком Р. Ван-де-Граафом (1901—1967), состоит из шарообразного полого проводника 1 (рис. 143), укрепленного на изоляторах 2. Движущаяся замкнутая лента 3 из прорезиненной ткани заряжается от источника напряжения с помощью системы остриев 4, соединенных с одним из полюсов источника, второй полюс которого заземлен. Заземленная пластина 5 усиливает стекание зарядов с остриев на ленту. Другая система остриев 6 снимает заряды с ленты и передает их полому шару, и они переходят на его внешнюю поверхность. Таким образом, сфере передается постепенно большой заряд и удается достичь разности потенциалов в несколько миллионов вольт. Электростатические генераторы применяются в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.

  Отличие рассмотрения задач в механике и в термодинамике

Прежде всего, отметим качественное отличие описания процессов в механике и термодинамике. В механике есть уравнение движения (2-й закон Ньютона), а в термодинамике («термостатике») – термическое уравнение состояния (1.1), связывающее термодинамические параметры, знание которых для феноменологической термодинамики означает знание состояния термодинамической системы. Поскольку связь между параметрами (1.1) (существующая только в равновесных или близких к таковым состояниях) позволяет любой из параметров выразить через остальные, то описание процессов в термодинамике оказывается многовариантным. С примером этого мы уже встретились при описании адиабатного процесса в идеальном газе, где адиабатный процесс равносильно описывался тремя разными уравнениями (3.8), (3.9) и (3.10).

Возможность разных вариантов описания одного и того же термодинамического процесса породила в термодинамике проблему, которой нет в механике, а именно, проблему выбора переменных, выбора функций, наиболее удобно (с точки зрения практических приложений) описывающих процесс изменения состояния.

В 1875 году американский физик Гиббс показал, что для решения технических задач термодинамики вполне достаточно знать поведение в термодинамических процессах всего четырех функций, играющих в термодинамике роль, аналогичную роли потенциальной энергии в механике. Эти четыре функции соотносятся с четырьмя рассмотренными ранее процессами (два адиабатных и два изотермических), которых достаточно, чтобы смоделировать работу любого технически интересного термодинамического устройства. Термодинамических потенциалов четыре, так как в термодинамике четыре основные переменные – две механические для работы (давление и объем, то есть сила и перемещение) и две тепловые для теплоты (температура и энтропия), которые могут рассматриваться в качестве независимых координат термодинамических процессов. Это хорошо видно из выражений, описывающих два механизма передачи энергии термодинамической системе: PdV  и Q = TdS.

Удерживая неизменными (закрепляя) по одной механической и одной тепловой координате, мы получаем четыре разновидности основных термодинамических процессов, которых достаточно, чтобы равновесным способом перевести термодинамическую систему из любого начального (равновесного) состояния в любое конечное (равновесное), и соответствующие им четыре термодинамических потенциала. А раз так, то необходимо научиться находить эти основные термодинамические потенциалы (точнее – разность их значений) в разных состояниях, то есть надо найти дифференциальные уравнения, связывающие скорость изменения термодинамических потенциалов со значениями термодинамических параметров и их производными (то есть с величинами, которые могут быть определены опытным путем). Эти уравнения получили название- термодинамические уравнения состояния (в отличие от обычных, термических уравнений состояния, в которые входят только термодинамические параметры и которые либо очень сложны, либо вовсе нам неизвестны). Все эти уравнения выводятся из термодинамического тождества (5.3) (термодинамической формы записи закона сохранения энергии, учитывающей существование энтропии) ТdS = dU + dA.

Термодинамические уравнения состояния


Начнем с внутренней энергии, которую в термодинамическом тождестве можно представить через полный дифференциал двух переменных - температуры и объема, тогда


Дифференциал энтропии как функции двух переменных (Т,V) можно записать в виде


Сравнивая эти два выражения, находим, что

Поскольку вторые, перекрестные производные от функции двух переменных должны быть равны независимо от порядка дифференцирования, то есть


и, следовательно,


откуда

и мы имеем термодинамическое уравнение состояния для внутренней энергии (как функции объема при постоянной температуре).

 Все величины, стоящие в правой части уравнения (7.1), легко поддаются измерению на опыте, что позволяет найти зависимость внутренней энергии от объема при разных температурах.

Знание этой зависимости позволяет найти разность теплоемкостей при постоянном давлении и постоянном объеме по уравнению (2.6), то есть технически важную характеристику термодинамических объектов.

 Если переменными являются другие параметры, то термодинамическое уравнение состояния для внутренней энергии может быть записано просто по аналогии. Например, из уравнения (7.1) можно получить зависимость внутренней энергии аккумулятора от его заряда при разных температурах. Поскольку работа, совершаемая аккумулятором при перемещении по электрической цепи заряда q, равна произведению электродвижущей силы источника тока E(ЭДС) на величину заряда, то элементарная работа имеет вид dA = Edq. Сравнивая работу газа и работу источника тока, то-есть dA = PdV и dA = Edq, мы видим, что здесь заряд играет роль объема, а ЭДС источника – роль давления. Теперь по аналогии с уравнением (7.1) можно получить зависимость внутренней энергии аккумулятора от заряда через температурную зависимость ЭДС аккумулятора


Поскольку температурная зависимость ЭДС при постоянном заряде легко находится опытным путем, то это уравнение приобретает прямую практическую значимость. 


Термодинамическое тождество позволяет также получить уравнение, связывающее изменение энтальпии с термодинамическими параметрами. Поскольку H = U + PV, и значит dU = dH - PdV - VdP, а дифференциал энтальпии как функции температуры Т и давления Р имеет вид

то термодинамическое тождество (5.4) после замены dU и dH дает 



В то же время дифференциал энтропии как функции температуры Т и давления Р


и, следовательно,

Из равенства перекрестных производных


получаем


откуда, после раскрытия скобок, окончательно имеем

 Это - термодинамическое уравнение состояния для энтальпии (как функции давления при постоянной температуре), где правая часть легко определяется опытным путем.

 Что касается термодинамических уравнений состояния для двух других термодинамических потенциалов, то есть свободной энергии F и термодинамического потенциала Гиббса G (свободной энтальпии), то они находятся легче и выглядят проще, чем для внутренней энергии и энтальпии. Из уравнения (6.5), которое дает dU = dF + TdS + SdT, и термодинамического тождества TdS = dU + PdV мы получаем dF = - PdV – SdT.


С другой стороны, дифференциал свободной энергии как функции объема и температуры


Сравнивая эти два уравнения, находим скорость изменения свободной энергии в изотермическом процессе при изменении объема

Это уравнение означает, что если мы знаем давление при некоторой температуре (которое довольно легко измерить), то мы знаем быстроту изменения свободной энергии и можем вычислить ее изменение в изотермическом процессе при изменении объема.


Совершенно аналогичным образом находится выражение для дифференциала термодинамического потенциала Гиббса


Отсюда скорость изменения термодинамического потенциала в изотермическом процессе при изменении давления просто равна объему


Поскольку объем достаточно легко измеряется, то уравнение (7.4) позволяет вычислить изменение термодинамического потенциала Гиббса в изотермическом процессе при изменении давления.

Практический интерес в термодинамике представляют не абсолютные значения термодинамических функций, а их изменения при переходе системы из одного состояния в другое. Поэтому функции находят с точностью до произвольного постоянного слагаемого (в этом смысле они похожи на потенциальную энергию в механике, которая отсчитывается от произвольного уровня, принимаемого за нулевой).

 Система связей между термодинамическими функциями.

 Уравнения Гиббса - Гельмгольца. Соотношения Максвелла


Термодинамическое тождество (5.4) TdS = dU + PdV и определения термодинамических потенциалов (6.3) H = U + PV, (6.5) F = U – TS и (6.7) G = U – TS+ PV позволяют записать полные дифференциалы энтальпии, свободной энергии и потенциала Гиббса в виде: dH = TdS + VdP, dF = - SdT – PdV, dG = - SdT + VdP. Отсюда сразу следуют связи

Если подставить выражения для энтропии из (7.5) в уравнения (6.5) и (6.7) и учесть (6.3), то получатся уравнения Гиббса-Гельмгольца, связывающие термодинамические потенциалы друг с другом и с их

производными по термодинамическим параметрам


Из выражений для полных дифференциалов свободной энергии и потенциала Гиббса (dF = - SdT – PdV и dG = -SdT + VdP) и по свойству равенства перекрестных производных


получаем соотношения Максвелла


Слева в этих уравнениях стоят скорости изменения энтропии в изотермических процессах при изменении объема или давления, а правые части этих уравнений легко находят опытным путем, так как в первом уравнении справа от знака равенства стоит произведение давления Р на изохорный коэффициент температурного давления β, а в правом уравнении – произведение объема V на изобарный коэффициент теплового расширения α (со знаком минус).


Вторые производные от потенциалов связывают важные для практики значения теплоемкостей при постоянном объеме или давлении с изменением энтропии



Уравнения (7.13) имеют отношение к 3-у началу термодинамики (теореме Нернста): При приближении температуры к абсолютному нулю энтропия однородной системы стремится к нулю, LimS]T=0 = 0. В рамках феноменологической термодинамики 3-е начало фиксирует точку отсчета энтропии. Энтропия при этом может быть вычислена по формуле

из которой видно, что вблизи абсолютного нуля теплоемкость должна становиться бесконечно малой (чтобы интеграл не обращался в бесконечность). Это значит, что никакими способами нельзя отнять теплоту у термодинамической системы, то есть абсолютный нуль недостижим.


Вторые производные от термодинамических потенциалов связаны также с коэффициентами сжимаемости - изотермическим kT и адиабатным kS - при соответствующих процессах (или с обратными им величинами – модулями всестороннего сжатия ВТ и ВS). Произведения этих коэффициентов на объем дают вторые производные по давлению от термодинамического потенциала Гиббса G и энтальпии Н


а обратные им величины дают вторые производные по объему от свободной

энергии F и внутренней энергии U


Для изохорного термического коэффициента давления его произведение на давление (Рдает перекрестную производную от свободной энергии по температуре и объему (со знаком минус) (сравните с уравнениями 7.12)

Вся эта система связей между термодинамическими функциями позволяет, зная любой из термодинамических потенциалов, найти все остальные. На практике снимают доступные измерениям экспериментальные зависимости и по ним строят графики или таблицы зависимостей термодинамических потенциалов и энтропии от термодинамических параметров для самых различных веществ, а потом подбирают наиболее подходящие вещества в качестве самых эффективных рабочих тел в термодинамических процессах.


Фотопроводимость полупроводников