Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Пример 2. Три одинаковых источника тока с ЭДС В каждый соединены параллельно и создают в цепи ток А. Определить коэффициент полезного действия батареи, если внутреннее сопротивление каждого источника тока   Ом.

Решение. При параллельном подключении одинаковых источников тока их общая электродвижущая сила равна ЭДС одного источника. В то же время батарея источников создает разветвленный участок цепи, общее сопротивление которого может быть найдено из формулы проводимости группы параллельно соединенных элементов

Типы диэлектриков. Поляризация диэлектриков

Диэлектрик (как и всякое вещество) состоит из атомов и молекул. Так как положительный заряд всех ядер молекулы равен суммарному заряду электронов, то молекула в целом электрически нейтральна. Если заменить положительные заряды ядер молекул суммарным зарядом + Q, находящимся в центре «тяжести» положительных зарядов, а заряд всех электронов — суммарным отрицательным зарядом – Q, находящимся в центре «тяжести» отрицательных зарядов, то молекулу можно рассматривать как электрический диполь с электрическим моментом, определяемым формулой (80.3).

Первую группу диэлектриков (N2, Н2, О2, СО2, СН4, ...) составляют вещества, молекулы которых имеют симметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы р равен нулю. Молекулы таких диэлектриков называются неполярными. Под действием внешнего электрического поля заряды неполярных молекул смещаются в противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает дипольный момент.

Вторую группу диэлектриков (H2O, NН3, SO2, CO,...) составляют вещества, молекулы которых имеют асимметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными. При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.

Третью группу диэлектриков (NaCl, KCl, КВr, ...) составляют вещества, молекулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. В этих кристаллах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возникновению дипольных моментов.

Таким образом, внесение всех трех групп диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика, или, иными словами, к поляризации диэлектрика. Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей.

Соответственно трем группам диэлектриков различают три вида поляризации:

электронная, или деформационная, поляризация диэлектрика с неполярными молекулами, заключающаяся в возникновении у атомов индуцированного дипольного момента за счет деформации электронных орбит;

ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура;

ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных — против поля, приводящем к возникновению дипольных моментов.

Поляризованность. Напряженность поля в диэлектрике

При помещении диэлектрика во внешнее электрическое поле он поляризуется, т. е. приобретает отличный от нуля дипольный момент  где рi — дипольный момент одной молекулы. Для количественного описания поляризации диэлектрика пользуются векторной величиной — поляризованностью, определяемой как дипольный момент единицы объема диэлектрика:

  (88.1)

Из опыта следует, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. § 91) поляризованность Р линейно зависит от напряженности поля Е. Если диэлектрик изотропный и Е не слишком велико, то

  (88.2)

где { — диэлектрическая восприимчивость вещества, характеризующая свойства диэлектрика; { – величина безразмерная; притом всегда { > 0 и для большинства диэлектриков (твердых и жидких) составляет несколько единиц (хотя, например, для спирта {»25, для воды {=80).

Для установления количественных закономерностей поля в диэлектрике внесем в однородное внешнее электрическое поле Е0 (создается двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика, расположив ее так, как показано на рис. 135. Под действием поля диэлектрик поляризуется, т. е. происходит смещение зарядов: положительные смещаются по полю, отрицательные — против поля. В результате этого на правой грани диэлектрика, обращенного к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью +s', на левой — отрицательного заряда с поверхностной плотностью –s'. Эти нескомпенсированные заряды, появляющиеся в результате поляризации диэлектрика, называются связанными. Так как их поверхностная плотность s' меньше плотности s свободных зарядов плоскостей, то не все поле Е компенсируется полем зарядов диэлектрика: часть линий напряженности пройдет сквозь диэлектрик, другая же часть — обрывается на связанных зарядах. Следовательно, поляризация диэлектрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е=Е0.

Таким образом, появление связанных зарядов приводит к возникновению дополнительного электрического поля Е' (поля, создаваемого связанными зарядами), которое направлено против внешнего поля Е0 (поля, создаваемого свободными зарядами) и ослабляет его. Результирующее поле внутри диэлектрика

Поле Е'=s'/e0 (поле, созданное двумя бесконечными заряженными плоскостями; см. формулу (82.2)), поэтому

  (88.3)

Определим поверхностную плотность связанных зарядов s'. По (88.1), полный дипольный момент пластинки диэлектрика pV =PV = PSd, где S — площадь грани пластинки, d — ее толщина. С другой стороны, полный дипольный момент, согласно (80.3), равен произведению связанного заряда каждой грани Q' =s' S на расстояние d между ними, т. е. рV = s' Sd. Таким образом, PSd= s' Sd, или

  (88.4)

т. е. поверхностная плотность связанных зарядов s' равна поляризованности Р. Подставив в (88.3) выражения (88.4) и (88.2), получим

 

откуда напряженность результирующего поля внутри диэлектрика равна

  (88.5)

Безразмерная величина

 (88.6)

называется диэлектрической проницаемостью среды. Сравнивая (88.5) и (88.6), видим, что e показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле.

Энтропия в замкнутых системах. Обратимость процессов как условие сохранения энтропии. Энтропия и необратимость.  Неравенство Клаузиуса

Для пояснения связи энтропии с неполной превращаемостью теплоты в работу обратимся снова к циклу Карно, используя целесообразную в данном случае дифференциальную форму записи. Поскольку никаких потерь в машине Карно нет, то полученную за цикл от машины работу можно представить как разность теплоты, полученной рабочим телом (идеальным газом) от нагревателя, и теплоты, отданной рабочим телом холодильнику, то есть dA = dQн - dQх. Теперь воспользуемся выражением для коэффициента полезного действия машины Карно (4.1) dAdQн = 1 - dQх /dQн =1 - Тх /Тн. Откуда dQх /dQн = Тх /Тн . При передаче теплоты рабочему телу в изотермическом процессе равны температуры Тн = Трт нагревателя и рабочего тела и, соответственно, равны отданная нагревателем теплота и теплота, полученная рабочим телом, dQн = dQрт. Теперь, используя выражение (5.1) для изменения энтропии, мы можем представить принципиально не преобразуемую в работу за цикл часть взятой у нагревателя теплоты выражением dQх = Тх (dQн / Тн) = Тх (dQрт / Трт ) = ТхdS ,

из которого видно, что количество принципиально не преобразуемой в работу за цикл теплоты зависит от температуры холодильника тепловой машины и изменения в рабочем цикле энтропии рабочего тела, а именно равно их произведению. Здесь речь идет о том количестве энтропии, которое забирается рабочим телом у нагревателя и отдается холодильнику, и при этом понижается степень хаотичности состояния нагревателя, но в равной мере повышается степень хаотичности холодильника, а в целом хаотичность состояния всей системы остается неизменной. Поскольку каждый из сомножителей в правой части равенства в замкнутой системе не может быть равен нулю, то невозможно за цикл не отдавать часть теплоты холодильнику (утрачивая после этого возможность ее дальнейшего преобразования в работу).

Уравнение (5.1) показывает, что в теплоизолированной термодинамической системе энтропия может сохраняться, но это условие (отсутствие теплообмена с внешним миром) является лишь необходимым, но не достаточным условием для сохранения энтропии.

Опыт показывает, что в изолированных системах даже при отсутствии теплообмена энтропия может возрастать, если в них идут релаксационные процессы самопроизвольного выравнивания термодинамических параметров. Для возвращения системы в первоначальное состояние теперь необходимо внешнее воздействие – систему можно квазистатическим образом перевести в начальное состояние, используя отвод теплоты и вычисляя необходимое уменьшение энтропии согласно уравнению (5.1).

Спонтанные (самопроизвольные) изменения в теплоизолированной (адиабатически замкнутой) системе всегда ведут к возрастанию энтропии. В этой асимметрии течения природных процессов заключена причина различимости прошлого и будущего.

С течением релаксационных процессов в системе постепенно утрачивается возможность преобразования теплоты в работу, которая раньше существовала в силу наличия перепадов (неравномерности по объему) интенсивных параметров, например, при выравнивании температур нагревателя и холодильника у тепловой машины. Происходит также так называемая диссипация (рассеяние) энергии за счет работы сил трения, то есть превращение энергии макроскопических движений тел в энергию хаотического движения микрочастиц. Это означает, что самопроизвольно степень хаотичности состояния системы может только увеличиваться, но никогда не убывает, оставаясь неизменной в замкнутых системах лишь в случае протекания в них полностью обратимых процессов.

В необратимых процессах проявляется еще одно свойство энтропии, не связанное прямо с введением понятия энтропии, для чего было вполне достаточно рассмотрения полностью обратимых процессов (пусть даже в мысленных, идеализированных экспериментах).

Второе начало термодинамики иногда формулируют как принцип неубывания энтропии в замкнутых системах при любых процессах, идущих в этих системах, и записывают математически как


Таким образом, второе начало термодинамики несет в себе двойное содержание.

Во-первых, принцип существования и сохранения энтропии, утверждающий существование функции состояния, характеризующей степень хаотичности состояния термодинамической системы, и сохранение этой функции в замкнутых системах, при условии протекания в них полностью обратимых процессов. Принцип сохранения энтропии означает невозможность никаким способом понизить энтропию в полностью изолированных термодинамических системах.

Во-вторых, принцип самопроизвольного возрастания энтропии в замкнутых системах при протекании в них необратимых процессов. Это значит, что степень хаотичности термодинамической системы, находящейся в неравновесном состоянии, самопроизвольно возрастает до тех пор, пока в системе не установится термодинамическое равновесие. При приближении изолированной системы к состоянию теплового равновесия энтропия системы стремится к максимуму.

В тех случаях, когда энтропия возрастает не только за счет поступления в систему теплоты извне, но и за счет спонтанно (самопроизвольно) идущих релаксационных процессов, термодинамическое тождество превращается в неравенство Клаузиуса. В общей форме оно записывается в виде

 TdS > dU + dA. (5.6)

Запишем его в форме, связанной с газообразным состоянием тел,

 TdS > dU + PdV  . (5.7)

Это неравенство играет большую роль при рассмотрении процессов приближения термодинамических систем к равновесию в случаях, когда система открыта, то есть не изолирована от внешнего мира. Наше знание того, что при приближении системы к равновесию энтропия стремится к максимуму, позволяет через неравенство Клаузиуса найти функции (разные для разных случаев открытости), которые при приближении открытых систем к равновесию стремятся к своему экстремуму (минимуму). Этими функциями являются: внутренняя энергия, энтальпия, свободная энергия и термодинамический потенциал Гиббса. Подробнее об этих функциях будет рассказано ниже.


Фотопроводимость полупроводников