Типы диэлектриков. Поляризация диэлектриков Постоянный электрический ток Закон Ома. Сопротивление проводников Электрические токи в металлах, вакууме и газах Плазма и ее свойства

Пример 2. Три одинаковых источника тока с ЭДС В каждый соединены параллельно и создают в цепи ток А. Определить коэффициент полезного действия батареи, если внутреннее сопротивление каждого источника тока   Ом.

Решение. При параллельном подключении одинаковых источников тока их общая электродвижущая сила равна ЭДС одного источника. В то же время батарея источников создает разветвленный участок цепи, общее сопротивление которого может быть найдено из формулы проводимости группы параллельно соединенных элементов

Напряженность как градиент потенциала. Эквипотенциальные поверхности

Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом — энергетической характеристикой поля.

Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x2—x1=dx, равна Exdx. Та же работа равна j1—j2=dj. Приравняв оба выражения, можем записать

  (85.1)

где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор Е:

где i, j, k — единичные векторы координатных осей х, у, z.

Из определения градиента (12.4) и (12.6) следует, что

  (85.2)

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала электростатического поля, как и в случае поля тяготения (см. § 25), пользуются эквипотенциальными поверхностями — поверхностями, во всех точках которых потенциал j имеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал, согласно (84.5),   Таким образом, эквипотенциальные поверхности в данном случае — концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда — радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше.

Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом — впадину (б).

Вычисление разности потенциалов по напряженности поля

Установленная в § 85 связь между напряженностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя произвольными точками этого поля.

1. Поле равномерно заряженной бесконечной плоскости определяется формулой (82.1): E=s/(2e0), где s — поверхностная плотность заряда. Разность потенциалов между точками, лежащими на расстояниях x1 и х2 от плоскости, равна (используем формулу (85.1))

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей определяется формулой (82.2); Е=s/e0, где s — поверхностная плотность заряда. Разность потенциалов между плоскостями, расстояние между которыми равно d (см. формулу (85.1)), равна

  (86.1)

3. Поле равномерно заряженной сферической поверхности радиуса R с общим зарядом Q вне сферы

(r> R) вычисляется по (82.3):  Разность потенциалов между двумя точками, лежащими на расстояниях r1 и r2 от центра сферы (r1 >R, r2>R, r2>r1), равна

  (86.2)

Если принять r1=r и r2=¥, то потенциал поля вне сферической поверхности, согласно формуле (86.2), задается выражением

(ср. с формулой (84.5)). Внутри сферической поверхности потенциал всюду одинаков и равен

График зависимости j от r приведен на рис. 134.

4. Поле объемно заряженного шара радиуса R с общим зарядом Q вне шара (r>R) вычисляется по формуле (82.3), поэтому разность потенциалов между двумя точками, лежащими на расстояниях r1 и r2 от центра шара (r1 > R, r2 > R, r2 > r1), определяется формулой (86.2). В любой точке, лежащей внутри шара на расстоянии r' от его центра (r'<R), напряженность определяется выражением (82.4):  Следовательно, разность потенциалов между двумя точками, лежащими на расстояниях  и  от центра шара (<R, <R, >), равна

5. Поле равномерно заряженного бесконечного цилиндра радиуса R, заряженного с линейной

плотностью t, вне цилиндра (r>R) определяется формулой (82.5):  Следовательно, разность потенциалов между двумя точками, лежащими на расстояниях r1 м r2 от оси заряженного цилиндра (r1>R, r2>R, r2>r1), равна

 (86.3)

Энтропия как мера хаотичности состояния термодинамической системы. Формула Клаузиуса для вычисления изменения энтропии в обратимом процессе. Термодинамическое тождество


Новое свойство требует введения нового понятия, позволяющего качественно и количественно охарактеризовать это свойство, и, естественно, новой терминологии. Клаузиус назвал (1865) величину, измеряющую степень хаотичности состояния термодинамической системы, энтропией.

Что должна представлять собой эта величина и функцией чего она должна являться? Как измерить молекулярный беспорядок (хаос)? Как энтропия выражает степень хаотичности состояния термодинамической системы?

Обратимся опять к модели идеального газа, чтобы понять, в чем проявляется и при каких изменениях параметров изменяется согласованность (корреляция) в состояниях отдельных частиц термодинамической системы.

 В механической теории теплоты (которая считает справедливыми в микромире законы классической механики) состояние термодинамической системы полностью определяется координатами и импульсами всех частиц, образующих термодинамическую систему, а хаотичность состояния системы проявляется в существовании дисперсии (квадрата среднеквадратичного отклонения от среднего значения) микропараметров, определяющих состояние термодинамической системы. Дисперсия является мерой рассеяния случайных величин, а корень квадратный из дисперсии (стандарт случайной величины)  дает среднеквадратичное отклонение случайной величины от ее среднего значения. При хаотическом движении микрочастиц их координаты и импульсы рассматриваются как случайные величины. Следовательно, изменение степени хаотичности состояния должно сопровождаться изменением дисперсии этих параметров (и соответственно, их стандарта – корня квадратного из дисперсии).

Модель идеального газа позволяет понять, о чем идет речь. Здесь частицы, участвующие в тепловом движении, хотя и двигаются вполне хаотически, проявляют, тем не менее, некоторую корреляцию (соответствие) своих состояний, так как существует некоторая согласованность в их движениях (импульсах) и некоторая упорядоченность расположения в пространстве (координатах). При термодинамическом равновесии сохраняется средний разброс импульсов около их среднего значения и разброс около среднего положения в пространстве (определяемый размерами сосуда с газом). Исторически сложилось так, что в термодинамике начали искать функцию, измеряющую не согласованность (корреляцию) состояний микрочастиц, а противоположную по смыслу функцию, измеряющую несогласованность микросостояний. Если под хаотичностью состояния понимать некоррелированность (несогласованность) состояний отдельных частиц термодинамической системы, то можно ввести величину, являющуюся мерой этой хаотичности и позволяющую количественно оценивать степень несогласованности состояний отдельных частиц системы, то есть степень хаотичности состояния системы (или, по крайней мере, ее изменение при изменении состояния системы). Разумеется, способы вычисления этой величины должны быть разными в феноменологической термодинамике и в статистической механике. Так в статистической механике эта функция состояния системы (мера статистически усредненного отклонения отдельных частиц системы от их усредненных положений в фазовом пространстве) вычисляется методами теории вероятностей. 

Из рассмотренного примера с идеальным газом видно, что, поскольку хаотичность состояния термодинамической системы определяется независимым образом, как дисперсией координат, так и дисперсией импульсов частиц, то возможны такие изменения состояния системы, при которых величина, характеризующая степень хаотичности состояния системы, остается неизменной, поскольку ее возрастание, например, за счет увеличения объема (увеличение дисперсии координат), компенсируется убыванием за счет уменьшения дисперсии импульсов при понижении температуры. Таково адиабатное расширение газа (см. ПРИЛОЖЕНИЕ 3).

Если абсолютизировать модель идеального газа, то она позволяет также предсказать (по крайней мере, качественно) поведение искомой величины при изменении температуры. В силу самой модели идеального газа, очевидно, что его молекулы при абсолютном нуле температуры должны иметь неизменные, фиксированные координаты («упасть на дно сосуда» при внешнем силовом поле) и одинаковые, равные нулю импульсы. Это соответствует минимально возможным дисперсиям координат и импульсов и, значит, минимальному значению искомой функции. При повышении температуры дисперсия координат молекул идеального газа будет определяться только размерами сосуда (вне зависимости от температуры), а что касается дисперсии импульсов, то в рамках феноменологической термодинамики достаточно качественного указания на ее увеличение с ростом температуры (что очевидно, если мысленно повышать температуру системы, начиная с абсолютного нуля). Возможность точных количественных расчетов должны дать методы статистической механики.

При изучении новых явлений большую роль всегда играло знание величин, сохраняющихся в процессах, происходящих в изолированных системах. Огромное значение для развития механики и электричества имело открытие законов сохранения энергии, импульса и момента импульса. Поэтому естественно, что усилия исследователей тепловых закономерностей были направлены на обнаружение величин, сохраняющихся в термодинамических процессах, хотя качественное отличие термодинамики от механики очевидно: Процессы, в которых присутствует самопроизвольное выравнивание термодинамических параметров, обладают свойством необратимости, в то время как все чисто механические (без участия сил трения) процессы полностью обратимы.

Поскольку в термодинамике, наряду с необратимыми процессами, в принципе возможны также и обратимые процессы, то поиск функции, позволяющей измерить степень хаотичности состояния термодинамической системы, естественно начать с рассмотрения полностью обратимых процессов в изолированных системах. В силу полной обратимости процессов и замкнутости систем степень хаотичности состояния таких систем не должна изменяться, и, следовательно, надо искать функцию, сохраняющуюся в замкнутых системах при всех обратимых тепловых процессах (в том числе при преобразованиях теплоты в работу). Это означает, что изменение этой функции у любого из тел, включенных в замкнутую систему, должно компенсироваться равным по величине, но противоположным по знаку суммарным изменением этой функции у других тел этой изолированной системы.

По своему смыслу искомая функция должна быть функцией состояния системы. В противном случае, проводя циклически (в нужном направлении цикла) термодинамическую систему в начальное состояние с другим, меньшим значением этой функции, можно было бы, многократно повторяя цикл, свести к нулю хаотичность состояния, что противоречит невозможности всю теплоту преобразовать в работу. Следовательно, в циклических процессах, при возвращении термодинамической системы в первоначальное состояние (вне зависимости от пути возвращения и даже без требования замкнутости системы и обратимости процессов) полное изменение этой функции должно быть равно нулю.

 Поиск функции состояния термодинамической системы, сохраняющейся в обратимых процессах в замкнутых (полностью изолированных от любых внешних воздействий) термодинамических системах, привел немецкого физика Рудольфа Клаузиуса к величине, первоначально получившей название «приведенная теплота». Понять, что это такое, можно из рассмотрения рабочего цикла все той же идеальной тепловой машины Карно.

Обратим внимание, что все сохраняющиеся величины носят экстенсивный характер, но сразу отметим, что ранее рассмотренная экстенсивная величина, характеризующая тепловые процессы, то есть теплота, передаваемая рабочему телу в цикле Карно, явным образом не сохраняется, несмотря на обратимость всех этапов цикла.

У нас уже есть соотношение (4.4): Q1/Q2 = T1/T2, утверждающее равенство отношения теплоты, полученной от нагревателя, к теплоте, отданной холодильнику, отношению температур нагревателя и холодильника. Уравнение можно переписать в виде отношения

 Q1/T1 = Q2/T2.

 Или, с учетом различия знаков для теплоты, получаемой или отдаваемой рабочим телом,  Q1/T1 = - Q2/T2 , что может быть записано как Q1/T1 + Q2/T2 = 0. Отношение переданной телу теплоты к его температуре получило название приведенной теплоты. 

Уравнение 

 Q1/T1 + Q2/T2 = 0

означает сохранение приведенной теплоты в цикле Карно.

 Дифференциальная форма (для предельно малого цикла Карно) дает

 dQ1/T1 + dQ2/T2 = 0. 

Таким образом, рассмотрение цикла Карно показало, что в циклическом процессе сохраняется сумма «приведенных теплот».


Кроме того, поскольку искомая функция должна быть функцией состояния и принимать прежнее значение при завершении цикла, то ее малое изменение должно быть полным дифференциалом (математическое требование, чтобы интеграл от такого дифференциала по замкнутому пути давал нуль). Малое количество теплоты Q полным дифференциалом не является, так как зависит от вида процесса, в котором совершается передача теплоты. Для получения из Q полного дифференциала следует воспользоваться известной в математике процедурой нахождения интегрирующего множителя. Сохранение приведенной теплоты подсказывает, что таким множителем может быть обратная абсолютная температура. Первое начало термодинамики (2.2) Q = dU + A для газа в форме  Q = CvdT + РdV и уравнение состояния идеального газа РV = RT позволяют убедиться, что это действительно так, что Q/Т является полным дифференциалом, так как

и очевидно, что справа стоит полный дифференциал функции двух переменных.

Гениальность Клаузиуса проявилась в том, что он увидел связь между изменением искомой функции состояния (изменением энтропии S) и поступлением в термодинамическую систему теплоты (то есть энергии, передаваемой через хаотическое движение микрочастиц). По Клаузиусу, это изменение определяется дифференциальным соотношением 

  

 (5.1)

Здесь принципиально важна обратимость процесса передачи теплоты.

Из этого соотношения сразу следует, что в обратимых процессах без теплообмена с внешними телами энтропия сохраняется (система не обязательно изолирована и может обмениваться энергией с окружением, но через работу). Так, например, обратимое адиабатное расширение или сжатие газа изоэнтропно, и степень хаотичности состояния системы сохраняется.

Возможность (по крайней мере, теоретическая) переводить систему из одного состояния в другое обратимым способом через передачу теплоты (например, в квазистатическом процессе) имеет принципиальное значение, так как позволяет вычислять разность значений энтропии между двумя любыми состояниями термодинамической системы посредством интегрирования дифференциала поступающей в систему приведенной

теплоты (дифференциала энтропии) по формуле


Этот прием вычисления изменения энтропии обладает всеобщностью, универсальностью, так как не связан с реально осуществляемым путем перехода системы из одного равновесного состояния в другое. Это так потому, что хотя разность энтропий находится через вычисления, относящиеся к обратимому, идеализированному переходу, но сама система может переходить из одного равновесного (начального) в другое равновесное (конечное) состояние любым (в том числе самопроизвольным и, следовательно, необратимым) способом.

Возможность написать в обобщенном законе сохранения энергии (2.2) теплоту Q через дифференциал энтропии как TdS позволяет представить первое начало термодинамики выражением 

 ТdS = dU + dA, (5.3)

получившим название термодинамическое тождество, которое записывается для газообразных тел в виде 

 TdS = СVdT + PdV. (5.4) 


Фотопроводимость полупроводников