Закон сохранения импульса Закон сохранения энергии Элементы механики жидкостей Движение тел в жидкостях и газах Основы термодинамики Твердые тела. Моно- и поликристаллы

Пример 4. Заряженная частица движется в магнитном поле по окружности со скоростью  Индукция магнитного поля В=0,3 Тл. Радиус окружности r=4 cм. Определить: 1) заряд частицы, если известно, что ее энергия равна Т=1,2∙104 эВ, 2) ускоряющую разность потенциалов, придавшую скорость частице.

Решение. 1. На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца, определяемая по формуле:

 Fл= QB, (1)

где Q – заряд частицы; В – магнитная индукция;  – скорость частицы; угол между векторами скорости и магнитной индукцией.

Динамика материальной точки и поступательного движения твердого тела

Первый закон Ньютона. Масса. Сила

Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.

ервый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета. Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведаны в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловленные ее неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т.е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10–12 их значения).

Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е. приобретают ускорения (динамическое проявление сил), либо деформируются, т. е. изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется числовым значением, направлением в пространстве и точкой приложения. Итак, сила — это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона — основной закон динамики поступательного движения — отвечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил:

а ~ F (т = const). (6.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно

а ~ 1/т (F = const).  (6.2)

Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение—величины векторные, можем записать

а = kF/m. (6.3)

Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).

В СИ коэффициент пропорциональности k= 1. Тогда

или

   (6.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:

 (6.5)

Векторная величина

 (6.6)

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материальной точки.

Подставляя (6.6) в (6.5), получим

  (6.7)

Это выражение — более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки.

Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе 1 кг сообщает ускорение 1 м/с2 в направлении действия силы:

1 Н = 1 кг×м/с2.

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенства нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7).

В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач. Например, на рис. 10 действующая сила F=ma разложена на два компонента: тангенциальную силу Ft, (направлена по касательной к траектории) и нормальную силу Fn (направлена по нормали к центру кривизны). Используя выражения  и , а также , можно записать:

 

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под F во втором законе Ньютона понимают результирующую силу.

Тело, его свойства и самодвижение

Механика — раздел физики, изучающий законы движения и взаимодействие тел.

«Тело» — важнейшее понятие механики, да и всех естественных наук. И, тем не менее, его понятийное значение оказывается наименее отработанным среди других основных понятий. Автору, например, не встречалась ни одна энциклопедия, ни один политехнический словарь, в котором бы фигурировало и тем более физически четко формулировалось понятие «тело». Отсутствует аналогичная формулировка и в «Началах...» Ньютона [2], поскольку последний, по-видимому, исходил из того, что это понятие общеупотребительно и потому всем знакомо без определения.

Отсутствие однозначного толкования понятия «тело» и характеристики его качеств, приводит к тому, что тело в естествознании постоянно отождествляют с понятием «материя», «вещество», «энергия», «масса» и т.д. То есть и с субстанциями и со свойствами. Последнее, т.е. свойство «масса», в физике повсеместно подменяет субстанцию «тело». Но если «тело» есть совокупность взаимосвязанных свойств, образующих в данной количественной пропорции определенный природный объект, то «масса» — рядовое свойство любого тела. И подмена в количественных расчетах субстанции «тело» на свойство «масса», с одной стороны, создает иллюзию естественного описания физических явлений, с другой, образует предпосылки некорректного понимания природных процессов. Поэтому основным для понимания данных процессов становится определение признака, отграничивающего субстанцию «тело» от свойств, его образующих. И такой признак существует — это размеренность.

Отсюда тело — природный объект, проявляющий свое существование через определенные качества — свойства. К тому же тело — совокупность свойств, не имеющая размеренности. Единственное «самостоятельное» (в смысле отграниченное от других) природное образование, тождествен-ные аналоги которого в природе отсутствуют. Для самого тела свойства отсутствуют. Они проявляются через определенные отношения с другими телами.Система, взаимодействующая своими свойствами со всеми окружающими телами. Безразмеренностъ и обусловливает телу свойства субстанции.

Отмечу — в физике используется термин «размерность». В соответствии с русским языком понятие «размер» и «размерность» есть величина какого-то измерения, т.е. результат сопоставления с эталоном и отображает неподвижность, статичность какой-то величины (параметра). Свойства же статическими величинами не являются. Термин «размеренность» отображает прежде всего взаимосвязи свойств и движение, т.е. динамику. И не просто движение, а ритмическое движение, несущее в себе гармонию, движение. То обстоятельство, которое определяет взаимосвязи свойств [6].

Подчеркну еще раз. Размеренность есть главное отличие свойства от субстанции. А потому все физические параметры, имеющие размеренность, являются свойствами и не обладают «самостоятельностью». Они — взаимосвязанные составляющие определенного тела, которое зачастую мы даже не фиксируем как тело. Например, пространство окружающего нас космоса — свойство нашей Галактики, образованное четырьмя не равнозначными имеющими размеренность составляющими: «длиной», «шириной», «высотой» и «глубиной». Иначе говоря: Галактика — тело, такое же как Вселенная, звезда, любой камень, молекула или элементарная частица. Она, как и Солнечная система, размеренности не имеет и по своему естественному положению в природе равнозначна всем природным телам (включая элементарные) и Вселенной в целом. Таким образом, и пространство, которое образует Солнечная система, тоже есть ее свойство. А свойство ¾ "пространство" быть безразмерност-ным не может, следовательно, не существует пространства как самостоятельной субстанции, как некоего отдельного вместилища для материи.

Свойство ¾ категория, характеризующая определенную, отдельную качественную сторону тела (объем, масса, сила, скорость... и т.д.), взаимосвязанная с другими свойствами того же тела, взаимодействующая с аналогичными свойствами других тел и имеющая размеренность. Размеренность может обозначаться отдельными элементами (г, с, см... и т.д.) или соотношениями элементов размеренности (г/см, см/с...).

Свойство, обладающее количественной величиной, может называться параметром.

Подчеркнем еще раз, — свойство это то, что самостоятельно не существует в природе. То, что невозможно отделить от тела, и, следовательно, то, что физически не может быть отдельным. То, что входит только в понятийный аппарат мыслящего существа, но отсутствует в природе как отдельность, являясь для природы ничем. Это полное ничто. В природе бесчисленное количество свойств (ничего). И это бесчисленное количество ничего (свойств) — «образует» тела. То есть «образует» то, что является всем, то, что является целым. Ничто не отделимо от всего. Гносеологически — ничто является всем. Без представления о свойствах как о понятиях, не существующих в реальном мире, но отражающих качественную составляющую тел, мыслящим существам понимать природу невозможно.

Все тела ¾ целое, поскольку все они образуются одними и теми же бесчисленными свойствами. Каждое из них — отдельное целое. Их совокупность ¾ единое многоуровневое целое. Как целое они равнозначны и, в совокупности, составляют единый абсолютный мир. Мир Господа, бесконечный как внутрь, так и наружу. Мир, состоящий из духовных (изначально и вечно живых) и материальных (неживых) тел. Отсюда: Жизнь есть способ существования духовных тел в материальном мире. И хотя свойства всех тел одни и те же, но количественные величины этих свойств (их числовые отображения) различны, что обусловливает качественную несопоставимость духовных и материальных тел, их принципиальное различие.

Все свойства тел являются имманентными, равнозначными, и мыслимое отсутствие любого из них у тела эквивалентно отсутствию тела, а потому в физических уравнениях, описывающих взаимосвязи свойств, не может быть параметров равных 0 или ∞. Таким образом, можно сформулировать абстрактное определение понятия «тело». Тело — совокупность бесчисленного количества взаимосвязанных свойств. Поэтому с позиций физического мира в природе нет ничего, кроме тел, состоящих из совокупности свойств.


Элементы квантовой механики