Закон Ампера. Взаимодействие параллельных токов Явление электромагнитной индукции Переменный ток Резонанс напряжений Мощность, выделяемая в цепи переменного тока Элементы электронной оптики

Пример 2. Два положительных заряда  нКл и нКл находятся на расстоянии см друг от друга. Определить положение точки, в которую нужно поместить заряд , чтобы он находился в равновесии. Каков должен быть знак заряда , чтобы равновесие было устойчивым?

 Решение. Рассмотрим вопрос об устойчивости равновесия заряда . Если заряд  будет находиться на линии, соединяющей заряды и , то, каков бы ни был знак заряда , силы его взаимодействия с зарядами и  будут направлены по одной прямой в

противоположные стороны.

Дифракция света

Принцип Гюйгенса — Френеля

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса — Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии — такая же, как при отсутствии экрана.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света. В общем случае расчет интерференции вторичных волн довольно сложный и громоздкий, однако, как будет показано ниже, для некоторых случаев нахождение амплитуды результирующего колебания осуществляется алгебраическим суммированием.

Метод зон Френеля. Прямолинейное распространение света

Принцип Гюйгенса — Френеля в рамках волновой теории должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмотрев взаимную интерференцию вторичных волн и применив прием, получивший название метода зон Френеля.

Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 257). Согласно принципу Гюйгенса — Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S). Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на l/2, т. е. Р1М – Р0М = Р2М – Р1М = Р3М – Р2М = ... = l/2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b + , b + 2, b + 3, ... . Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на l/2, то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

  (177.1)

где А1, А2, ... — амплитуды колебаний, возбуждаемых 1-й, 2-й, ..., т-й зонами.

Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис. 258). Обозначив площадь этого сегмента через sm, найдем, что площадь m-й зоны Френеля равна Dsm = sm – sm–1, где sm–1 —площадь сферического сегмента, выделяемого внешней границей (m – 1)-й зоны. Из рисунка следует, что

  (177.2)

После элементарных преобразований, учитывая, что l<<a и l<<b, получим

  (177.3)

Площадь сферического сегмента и площадь т-й зоны Френеля соответственно равны

 (177.4)

Выражение (177.4) не зависит от т, следовательно, при не слишком больших т площади зон Френеля одинаковы. Таким образом, построение зон Френеля разбивает волновую поверхность сферической волны на равные зоны.

Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол jт (рис. 258) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (около Р0) к периферическим. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом т и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фактора, можем записать

Общее число зон Френеля, умещающихся на полусфере, очень велико; например при а=b=10 см и l=0,5 мкм  Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е.

 (177.5)

Тогда выражение (177.1) можно записать в виде

  (177.6)

так как выражения, стоящие в скобках, согласно (177.5), равны нулю, а оставшаяся часть от амплитуды последней зоны ±Аm/2 ничтожно мала.

Таким образом, амплитуда результирующих колебаний в произвольной точке М определяется как бы действием только половины центральной зоны Френеля. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны.

Если в выражении (177.2) положим, что высота сегмента h<<а (при не слишком больших т), тогда . Подставив сюда значение (177.3), найдем радиус внешней границы т-й зоны Френеля:

  (177.7)

При а=b=10 см и l=0,5 мкм радиус первой (центральной) зоны r1 = 0,158 мм. Следовательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т.е. прямолинейно. Таким образом, принцип Гюйгенса — Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонные пластинки — в простейшем случае стеклянные пластинки, состоящие из системы чередующихся прозрачных и непрозрачных концентрических колец, построенных по принципу расположения зон Френеля, т. е. с радиусами rm зон Френеля, определяемыми выражением (177.7) для заданных значений а, b и l (т = 0, 2, 4,... для прозрачных и т = 1, 3, 5,... для непрозрачных колец). Если поместить зонную пластинку в строго определенном месте (на расстоянии а от точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки), то для света длиной волны l она перекроет четные зоны и оставит свободными нечетные начиная с центральной. В результате этого результирующая амплитуда A=A1+A3+A5+... должна быть больше, чем при полностью открытом волновом фронте. Опыт подтверждает эти выводы: зонная пластинка увеличивает освещенность в точке М, действуя подобно собирающей линзе.

Квантовая гипотеза и формула Планка. Фотоны

 Дать теоретическое обоснование спектральным закономерностям теплового излучения абсолютно черного тела удалось М. Планку. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, то есть, может принимать любые сколь угодные близкие значения. М.Планк выдвинул квантовую гипотезу, заключающуюся в том, что энергия атомов-осцилляторов может изменяться дискретно, порциями, пропорциональными некоторой элементарной порции – кванту энергии

 . (23)

Используя статистические методы и представления о квантовом характере теплового излучения, М.Планк вывел формулу

 , (24)

которая согласуется с экспериментальными данными по распределению энергии в спектрах излучения абсолютно черного тела во всем интервале частот от 0 до ¥ и при различных температурах. Кроме того, формула М.Планка содержит в себе законы теплового излучения, а также позволяет вычислить постоянные в этих законах.

  Эйнштейн, создавая квантовую теорию света, предположил, что не только излучение света, но и его распространение происходит в виде потока световых квантов-фотонов. Массу фотона можно найти из соотношения mс2 = hn

 , (25)

а импульс фотона

  . (26)


Радиоактивное излучение и его виды